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This article uses sim-max games to model perceptual categorization with the goal of an-
swering the following question: To what degree should we expect the perceptual cate-
gories of biological actors to track properties of the world around them? I argue that an
analysis of these games suggests that the relationship between real-world structure and
evolved perceptual categories is mediated by successful action in the sense that organisms
evolve to categorize together states of nature for which similar actions lead to similar re-
sults. This conclusion indicates that both strongly realist and strongly antirealist views
about perceptual categories are too simple.

1. Introduction. Hume’s skepticismwas based, in part, onwhat he believed
to be an inability of human observers to ever go beyond their perceptual ex-
periences. How can an observer determine the accuracy of perception when
her only access to the external world is mediated by perception itself? A
related question may be asked about not the qualities of perception but rather
the perceptual categories of biological actors. How can people reach beyond
perception to determine whether and to what degree perceptual categories—
sweet, green, cool—track properties of the world around them?

Jäger ð2007Þ introduced a set of games—‘sim-max games’—that can help
address this problem. Sim-max games are modified versions of the signal-
ing game, introduced by Lewis ð1969Þ, that assume actors are transferring
information about states of the world that bear underlying similarity rela-
tions to one another. What this means is that, unlike in a traditional Lewis
signaling game, there is a natural sense in which actors in sim-max games

*To contact the author, please write to: Department of Logic and Philosophy of Science,
University of California, Irvine, 3151 Social Science Plaza A, Irvine, CA 92697; e-mail:
cailino@uci.edu.

yMany thanks to Brian Skyrms, Simon Huttegger, Jeffrey Barrett, Kyle Stanford, Michael
McBride, James Weatherall, Louis Narens, Kimberly Jameson, Grant Ramsey, Katherine
Brading, and Justin Bruner for comments and suggestions. I would also like to thank audi-
ences at the PSA 2012, GIRL Lund 2013, the MCMP, the Notre Dame HPS colloquium se-
ries, and the UCI Social Dynamics seminar for wonderful feedback.

Philosophy of Science, 81 (December 2014) pp. 840–851. 0031-8248/2014/8105-0011$10.00
Copyright 2014 by the Philosophy of Science Association. All rights reserved.

840



might want to categorize groups of states together in order to transfer mean-
ing about them.1

This article will use sim-max games to model perceptual categorization,
with the goal of answering a question related to the problem mentioned
above: To what degree should we expect the perceptual categories of bio-
logical actors to track properties of the world around them? I will argue that
an analysis of these games suggests that the relationship between real-world
structure and evolved perceptual categories is mediated by successful action
in the sense that organisms evolve to categorize together states of nature for
which similar actions lead to similar results. This conclusion indicates that
both strongly realist and strongly antirealist views about perceptual catego-
ries are too simple.

Before beginning, I would like to make a methodological remark. One
might worry that the central observation of this article—that perceptual cat-
egories can be expected to group real-world items for which the same ac-
tions are effective—could be made without appeal to game theory. One can
give an intuitive argument for this observation; evolution responds to pay-
off, and thus perceptual categories will evolve to track payoff rather than nat-
ural structure. And, in fact, both vision researchers and philosophers of color
have made arguments along these lines.2 The game theoretic framework pre-
sented here, though, does two things that this intuitive argument does not.
First, sim-max games provide mathematical justification for what might oth-
erwise seem to be a hand-wavy conclusion. Second, the framework brings
conceptual clarity to a topic that is complex and many faceted. While the
thesis of the current article may seem obvious, or even trivial, from a strate-
gic point of view, it is certainly not universally accepted by philosophers or
scientists studying perception.3

1. Jäger is not the first to introduce this type of structure to the state space of a signal-
ing game. Crawford and Sobel ð1982Þ, in their famous paper on signaling, do so too.
Their model does not assume complete common interest between the actors, and for this
reason Jäger’s models are used here.

2. In their “wholly empirical theory of perception” Dale Purves and other vision re-
searchers are interested in explaining how the visual system solves the inverse op-
tics problem—that a single visual array can be caused by an infinite number of three-
dimensional stimuli. On their theory, this occurs through evolutionary and learning
processes that lead to successful ðrather than correctÞ interpretations of sensory input.
Purves, Wojtach, and Lotto ð2011Þ argue that “the basis for what we see is not the phys-
ical qualities of object or actual conditions in the world but operationally determined
perceptions that promote behaviors that worked in the past and are thus likely to work in
response to current retinal stimuli” ð1Þ. Thompson ð1995Þ argues that the function of
color vision is to divide surfaces into a small set of color categories that are useful as
a guide to behavior.

3. See, e.g., Hoffman ð2009Þ and Mark, Marion, and Hoffman ð2010Þ for insight into
standard views in perceptual science. They argue that most perceptual researchers hold
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In section 2, I describe sim-max games. In section 3, I outline optimal
strategies for these games and discuss their evolutionary properties. In sec-
tion 4, I describe how these games can be used as a model of the evolution
of perceptual categories and then proceed to make the principal arguments
of the article.

2. Signaling Games and Sim-Max Games. The standard signaling game,
as outlined by Lewis ð1969Þ, is often taken as a model of information trans-
fer between agents. The game has two players—a sender and a receiver—
and three stages. In stage 1, exogenous forces, or ‘nature’, determine the state
of the world. In stage 2, the sender observes this state and sends a signal to
the receiver contingent on it. In stage 3, the receiver observes the sent signal
and chooses an action. If the action is appropriate for the state of the world,
both players receive a payoff. If the action is inappropriate, neither player
receives a payoff. The goal of both players is to coordinate the action taken
by the receiver with the state observed by the sender. Neither player cares
how this coordination is achieved, that is, what specific signal is used to
denote any particular state, as long as coordination occurs.

Sim-max games build on this model by adding similarity structure to the
state space of the signaling game. In their basic form, these games model
situations in which organisms would like to transfer information about prop-
erties that vary finely, or even continuously. In these cases, because there
are many relevant states of the world that bear similarity relations to one an-
other, categorization is potentially useful for transferring information. Prop-
erties that fit this description are things like distance, size, degree, concen-
tration, color, time duration, temperature, and so on.

In sim-max games, states of the world are modeled as points in a metric
space where distance represents similarity.4 The greater the distance be-
tween two states, the less similar they are and vice versa. In these games, as
in the Lewis signaling game, ‘nature’ selects a state of the world. The sender
observes this state and sends a signal. The receiver observes this signal and
chooses an act. If the act is perfectly appropriate for the state of the world,
the actors receive identical, perfect payoffs. However, the key alteration to
the game is that if the act is not perfectly appropriate, the actors still re-
ceive a payoff based on how nearly appropriate the act is. In other words,
the game incorporates payoffs that vary as a function of the distance be-

4. For simplicity, this article will always assume that this space is a subset of Rn en-
dowed with a Euclidean metric.

the ‘conventional view’ of perceptual categories—that they veridically track real-world
structure. See Marr ð1982Þ as an example of the type of position Hoffman et al. have in
mind. See work by David Hilbert and Mohen Matthen for examples of prominent
philosophical positions that do not accept my thesis.
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tween the state of the world and the act taken. Specifically, payoff decreases
as distance between the state of the world and the act taken increases. This
aspect of the model mimics many real-world situations in which states bear
similarity relations to one another. In these cases, because states are sim-
ilar, the same action will often be appropriate ðor nearly appropriateÞ for a
number of them. If we are signaling about the ripeness of an apple, for ex-
ample, I might group a number of apples with different intensities of red-
ness under the signal ‘ripe’. If you bite into any one of these, youwill receive
a payoff because the apples are ripe or close to it. This will be the case even
if some of the redder apples are slightly more ripe than your ideal apple, and
some of the greener ones are slightly less so.

Before continuing, it will be useful to say a word about similarity, given
the importance of this concept to the sim-max model. Similarity is a com-
plex and much debated notion. In the most clear-cut cases, the claim that
real-world states can be more or less similar is perhaps not contentious. Con-
sider a situation in which the relevant states of the world correspond to the
length of a bridge. It is not strange to say that a 200-foot bridge is more like a
201-foot bridge than a 4-foot bridge, holding all other features constant. In
cases like this, one is considering similarity with respect to some feature of
objects.5 Moving away from these cases, one quickly runs into confusing
situations. Is a banana objectively more like a skyscraper or a wink? For the
purposes of this article, problems regarding similarity will have to be set
aside. It will be assumed that there are ways in which real-world states are
similar and dissimilar. The lessons drawn about relationships between per-
ceptual categories and real-world similarity, though, should be taken to ap-
ply more clearly in less contentious cases of similarity.6

3. Optimality, Equilibria, and Evolution. Having outlined sim-max games,
it will now be useful to discuss these games in more detail in order to un-
derstand how they shed light on perceptual categorization. In particular, I
will discuss optimality and some results from evolutionary game theory that
will help elaborate what sorts of strategies should be expected to evolve when
actors are playing sim-max games.

3.1. Strategies and Optimality in Sim-Max Games. Optimal strategies
in sim-max games are those strategies in which similar states are catego-

5. Goodman ð1972Þ argues that similarity only makes sense with respect to some feature.

6. It should be noted that the model presented in this section is far from the first formal
model of categorization. There is a very large formal literature in psychology and cog-
nitive science related to categorization. This work mainly attempts to model experimen-
tal results on human linguistic categorization. For an overview of this literature, see Mur-
phy ð2002Þ or Kruschke ð2008Þ. There is a smaller categorization literature in economics
that focuses more on optimal behavior ðe.g., Mohlin 2014Þ.
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rized under the same signal and in which the actor then takes an action in
response to that signal that is at least partially appropriate for all the states
attached to it. In other words, the receiver is taking acts that are as appro-
priate as possible as much of the time as possible. Such a strategy will al-
ways garner the highest payoffs for the actors, due to the assumption that
payoff decreases with distance. The question, then, is which strategies al-
low the actors to most perfectly coordinate action?

To understand these strategies, it will first be useful to describe what is
called a Voronoi tessellation. AVoronoi tessellation is a division of a space
around what are sometimes called ‘generators’ or ‘seeds’. These generators
consist of locations in the space. The tessellation is a division of the sur-
rounding space into cells, where every point is assigned to a cell on the ba-
sis of which generator it is closest to. Figure 1 shows four Voronoi tessel-
lations. The first two are of a straight line. Each point pictured in figures 1a
and 1b is a generator, and each cell of the tessellation is represented by two
vertical dashes on either side of these generators. Note that in each case the
vertical dashes are exactly equidistant from the generators on either side of
them. Figures 1c and 1d show Voronoi tessellations of a two-dimensional
space. Each generator is represented as a point, and each cell contains only
those points in the space closest to the generator at the center of that cell.

Suppose that the space in figure 1d represents the state space of a sim-
max game. Furthermore, suppose that each point represents the ideal state
for an act that a receiver is taking in response to some signal. The cells of the
Voronoi tessellation represent the optimal response by the sender to the re-
ceiver. For any particular state of the world, the sender assigns that state a
signal on the basis of which cell it is a part of. Given which acts the receiver
is taking for each signal, this sender strategy ensures that each state will
garner the highest payoff possible, because it will be matched with the clos-
est possible act. Given this type of optimal sender strategy, receivers then
optimize by spacing out signal interpretations so that the Voronoi cells as-
sociated with each one will be nearly the same size.7 Figures 1b and 1c
represent Voronoi strategies with this sort of optimal character.8

7. This is only true when states are equiprobable and the payoff function is the same over
all states of the world. In reality, this will never be the case. What this observation should
be taken to show is roughly that signals should be allocated to cover regions of states that
are of equal importance from a payoff perspective.

8. Only pure strategies of these games are considered here, as Lipman ð2009Þ has shown
that in common interest signaling scenarios mixed strategies never outperform pure
strategies and in all but a few ‘knife’s edge’ cases do strictly worse. Mine is obviously a
very informal description of these optimal strategies. For a more detailed treatment, see
Jäger, Metzger, and Riedel ð2011Þ. Jäger ð2007Þ discusses optimal sender strategies of
discrete sim-max games. O’Connor ð2013Þ discusses optimal strategies in discrete games
with a one-dimensional state space at greater length. Mohlin ð2014Þ has found similar
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3.2. Evolution and Emergence. What has not yet been addressed, but
will be important to subsequent discussion, is what the optimality of these
strategies means from an evolutionary perspective. As it turns out, there
are existing results from evolutionary game theory that can help inform the
problem at hand.

The first thing to note is that the optimal strategies of sim-max games are
always what are called payoff dominant Nash equilibria of the game. A Nash
equilibrium of a game is a set of strategies from which no player can uni-
laterally deviate and improve her payoff. Payoff dominant Nash equilibria
are those in which the actors achieve the highest possible payoffs. These
equilibria are significant from an evolutionary point of view. The replicator
dynamics—the most widely studied model of evolutionary change in evo-
lutionary game theory—work by successively increasing the frequency of
strategies in a population of players that get high payoffs and decreasing the
frequency of strategies that get low payoffs. Thus, strategies that are more
successful for both actors are often those that evolve. In standard Lewis sig-
naling games it has been shown that the payoff dominant equilibria of the
game, called ‘signaling systems’, will evolve under the replicator dynam-
ics in many cases ðsee, e.g., Skyrms 1996, 2000; Huttegger et al. 2010Þ. It is
not the case, however, that populations investigated using the replicator
dynamics always evolve to states in which the actors play payoff dominant
strategies. In fact, for Lewis signaling games, it has also been shown that
ðexcept in the special case of the two-state, two-signal, two-act game inwhich
states are equally likelyÞ populations can evolve to play less efficient strat-
egies ðsee Huttegger 2007; Pawlowitsch 2008; Huttegger et al. 2010Þ. Given
these observations, it cannot be assumed that players in models using sim-

optimality results in a model of categorization for the purposes of prediction. In Mohlin’s
model, unlike here, optimal category size emerges endogenously.

Figure 1. Voronoi tessellations of a line ða, bÞ and a two-dimensional space ðc, dÞ.
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max games will always evolve the type of optimal strategies that have been
described here. What should they be expected to evolve?

Jäger ð2007Þ, in an analysis of sim-max games and their behavior under
the replicator dynamics, has shown that the asymptotically stable rest points
of the game will be those where “the sender strategy is consistent with the
Voronoi tessellation that is induced by the image of the receiver strategy”
ð562Þ. In other words, under the replicator dynamics, categories—as rep-
resented by signaler strategies—that Voronoi tessellate the space will be the
asymptotically stable rest points. An asymptotically stable rest point under
the replicator dynamics is a state to which a population, if perturbed away
from this state, will return. The stability of these rest points makes them sig-
nificant from an evolutionary point of view. Furthermore, these categories
will be ideally suited to respond to the evolved receiver strategy. This holds
for the symmetrized version of the game in which each actor has both a
sender and a receiver strategy.

Jäger says nothing about what receiver strategy should be expected to
evolve in sim-max games, apart from restricting them to pure strategies. In
fact, though, the strategy set that he has delineated as those that might
evolve can be greatly restricted. As Jäger has argued, the strategies that will
evolve are those in which the sender strategy is a Voronoi tessellation of the
space in response to the receiver strategy. However, there are some strate-
gies in which this is the case but in which the receiver strategy is not the
best response to the sender strategy. In other words, the receiver can uni-
laterally deviate and improve payoff, which means that the strategies played
are not part of a Nash equilibrium. Non-Nash strategies are never stable un-
der the replicator dynamics and so will not evolve. The restriction of Jäger’s
strategies to Nash equilibria will include all the optimal strategies. It will
also include some strategies that are nonoptimal but, intuitively, are still
strategies in which the sender divides the state space nearly evenly into cate-
gories and the receiver responds appropriately.9

Jäger takes his results to show that Voronoi strategies will always be
those that evolve for sim-max games under the replicator dynamics, but
recent work by Elliott Wagner complicates these results. Wagner ðpersonal

9. Jäger et al. ð2011Þ has similar results for games in which the state space is continuous.
It should be noted that a subset of strategies called ‘babbling’ strategies will be both
Nash equilibria and Voronoi tessellations in response to receiver strategies but will not
have this character of near optimality. In babbling strategies, the sender always sends the
same signal no matter the state, and the receiver always takes the same act no matter the
signal. These strategies are not asymptotically stable in sim-max games, however. In
particular, they will not be part of what is called an evolutionarily stable set ðESSetÞ.
Cressman ð2003Þ has shown that for games of the type considered here, the asymp-
totically stable rest points of the game are all and only those strategies that are part of
ESSets.
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correspondenceÞ has shown that certain non-Voronoi strategies will be Lya-
punov stable for the symmetrized version of some sim-max games. A Lya-
punov stable rest point is one for which a population near that rest point
will stay near it. All asymptotically stable rest points are Lyapunov stable,
but the reverse is not true. In this sense, asymptotic stability is a stronger
type of stability. This is all to say that, in certain cases, non-Voronoi strat-
egies can evolve. Wagner’s results do indicate, however, that in cases in
which states of the world are numerous, non-Voronoi strategies are less
likely to evolve, so it may be that in models that closely correspond to real-
world cases ðin which states of the world tend to be manyÞ Jäger is largely
correct.

4. Applying Sim-Max Games to Perceptual Categorization. Signaling
games are most often taken as models of information transfer between or-
ganisms. In fact, though, signaling games can also be used to understand
within-organism processes. In particular, signaling games can be interpreted
as representing perceptual signaling. Under this interpretation, the state of
the world is a type of real-world item that causes perceptual input, while
the act taken is the reaction of the organism to this perceptual input. It is
difficult to say exactly what, in this scenario, the signal is. However, if one
allows for a broad interpretation, the signal can be taken to be a mediating
mental process that starts with perceptual input and ends with behavior. In
particular, one can take the perceptual experience of an organism to be an
important part of this signal.10

With this interpretation, one can use sim-max games as a model of per-
ceptual categorization. Upon doing this, the first thing to note is that the
evolved categories in sim-max games—Wagner’s results notwithstanding—
are convex. A convex set in a metric space is one where for any two points
in the set, every point on a straight line segment between these two points
is in the set as well. The cells of Voronoi tessellations are necessarily con-
vex, and so the categories that evolve in the long run in sim-max games are
convex as well. Convexity is interesting here because it means that actors
evolving perceptual categories should be expected to group together states
of the world in ways that reflect what are arguably natural properties of
these states. Like things will be grouped together, sufficiently unlike things
will not. In other words, perceptual categories should be expected to track

10. In a somewhat related interpretation, Jäger ð2007Þ uses sim-max games to under-
stand ‘conceptual spaces’. He interprets the states of the game as corresponding to per-
ceptual states, rather than real-world states, and argues that these games provide evidence
that conceptsmap to convex regions of perceptual space, as argued byGardenfors ð2000Þ.
His interpretation assumes that similar perceptual states will get similar payoffs in re-
sponse to action. While he does not argue for this assumption, the results provided here
indicate that it may be warranted.
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real-world structure in that similar real-world items will belong to the same
category while sufficiently different real-world items will not.

However, a closer look at just how similarity is built into the structure of
sim-max games indicates that, in fact, this conclusion is not warranted. In
describing sim-max games, I made an appeal to the geometrical structure of
the state spaces of the games. Throughout the article, to this point, distance
in this space has been described as representing similarity between different
states of the world. This is a natural way to describe these games and to give
an intuitive sense of how they work and why they behave as they do. But, in
fact, this intuitive way of understanding sim-max games is somewhat mis-
leading. Similarity relations in the state space of sim-max games are built in
through payoff structure alone. In other words, there is no necessary sense
in which two states are like or unlike each other except in that the same
acts will receive payoff for both states, or will not. The game can be de-
scribed perfectly, without appealing to geometry, as a set of states, a set of
acts, and a payoff defined for each pair of these. Another way to put this
is as follows: from a modeling perspective, two states, even if they are ob-
jectively wildly different, should be treated as occupying the same spot in
state space in a sim-max game if the same acts obtain the same payoffs in
both states.

What this means is that results from sim-max games only indicate what
follows: organisms will evolve to categorize together states of the world for
which the same act is appropriate, whether or not these states are somehow
similar or dissimilar. Organisms, then, should be expected to evolve per-
ceptual categories not directly on the basis of how real-world properties re-
late but on the basis of how organism action either contributes or does not
contribute to the organism’s success when these properties are present.11 An-
other way of saying this might be that perceptual categories should track
payoff similarity rather than real-world similarity.

The observations above, at first glance, may seem to strike a significant
blow to those committed to the idea that perceptual categories accurately
track real-world properties. Sim-max games seem to indicate that there is no
particular reason to think this is the case. Mark et al. ð2010Þ have argued
something similar on the basis of a different set of evolutionary game the-
oretic models. They have shown that in competitive choice situations, per-
ceptual categorization strategies that do not accurately mimic real-world
structure can outperform those that do. Along these lines, Hoffman claims
that perceptual categories should not be assumed to accurately reflect real-

11. Barrett ð2007Þ employs somewhat similar games and draws a somewhat related
conclusion: that the dispositions of the actors in his games importantly determine how
they will partition states of nature for the purposes of signaling. From this he concludes
that language cannot be assumed to track natural kinds.
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world properties because, as he says, “Fitness, not accuracy, is the objec-
tive function optimized by evolution” ð2009, 151Þ.

Such considerations might lead one to a strong antirealist position with
regard to perceptual categories—that there is no reason to think they track
natural properties—and this is indeed what Hoffman defends.12 But sim-
max games actually support only amoremodest claim.According to the sim-
max game framework, perceptual categorizations are determined through
payoff constraints rather than directly by real-world properties. A strong anti-
realist position requires an additional assumption, however, which is that
there is little relation between real-world structure and payoff structure. And
this assumption is unwarranted.

It seems likely, for example, that when organisms encounter two highly
similar real-world situations, the same actions will be appropriate to both.
Take two scenarios that are identical with the exception that in the first a
leopard is 20 feet away from a vervet and in the second the leopard is 21 feet
away. Because the physical realities of the two scenarios are similar, it will
be appropriate for the vervet to take the same action in both cases. In many
cases, similar real-world states should, in sim-max games, be mapped to the
same area of state space because they are appropriately paired with the same
sets of actions. If so, it should then be expected that perceptual categories
often track real-world similarity properly.

It is interesting to note, however, that in many situations, the same can-
not be said about the differentiation of unlike states. It is often the case
that similar actions will be appropriate for states of the world that are ob-
jectively different. If an escape pattern for vervets works both to avoid, say,
leopards and human hunters, there is no reason not to use the same category
to denote these two quite different groups of states. This argument about
categorization is well embodied by the example of human color perception.
It is notoriously difficult to identify some objective property of the world
that color experience perfectly corresponds to. The most promising property
is the surface spectral reflectance profile, or SSR, of a surface. This profile
is a measurement of the probabilities with which wavelengths of light will
reflect from a surface. While nearly identical SSRs will stimulate similar
color experiences in observers, sometimes quite different SSRs will also
stimulate similar color experiences in observers. In other words, color cat-
egorization respects similarity but not necessarily difference.

5. Conclusion. To conclude, I would like to reemphasize the two main in-
sights that the strategic framework presented here can provide with regard

12. Hoffman actually takes an even stronger antirealist position that he calls the ‘In-
terface Theory of Perception’. According this theory, perceptual categories specifically
do not track real-world structure. See Hoffman ð2009Þ and Mark et al. ð2010Þ.
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to perceptual categories. ð1Þ Perceptual categories should be expected to
evolve such that states that can be responded to with the same actions are
grouped together perceptually and states that cannot are not. ð2Þ The fact that
evolutionary processes are guided by payoff does not necessarily mean that
perceptual categories will fail to track real-world structure. Neither, though,
do these results support what Hoffman ð2009Þ calls the ‘conventional view’
of perception, that “the primary goal of perceptual categorization is to re-
cover, or estimate, the objective statistical structure of the physical world”
ð149Þ. Instead, the sim-max game framework provides a better understand-
ing of how perceptual categories should be expected to relate to real-world
structure on the basis of how real-world structure influences organism pay-
off. This relationship means that perceptual categories should not necessar-
ily be expected to either track or not track real-world structure but rather to
bear more complicated relationships to it.
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