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Abstract

Contemporary societies are often “polarized”, in the sense that sub-groups within these
societies hold stably opposing beliefs, even when there is a fact of the matter. Extant
models of polarization do not capture the idea that some beliefs are true and others false.
Here we present a model, based on the network epistemology framework of Bala and Goyal
[”Learning from neighbors”, Rev. Econ. Stud. 65(3), 784-811 (1998)], in which polarization
emerges even though agents gather evidence about their beliefs, and true belief yields a pay-
off advantage. The key mechanism that generates polarization involves treating evidence
generated by other agents as uncertain when their beliefs are relatively different from one’s
own.

1. Introduction

Is anthropogenic climate change real? This question, asked in the wrong setting, will spark
a furious debate. Some members of the U.S. public are convinced that global warming is
a liberal conspiracy dreamt up to restrict personal liberties. Others believe that climate
change is the most serious existential threat facing humanity. Although there has long
been a consensus among climate scientists that anthropogenic warming poses serious risks
(Oreskes, 2004), there does not appear to be an emerging consensus concerning this issue
among the American public at large (McCright and Dunlap, 2011). This is an example
of what is sometimes called “polarization”—subgroups within a society maintain stable,
opposing beliefs, even in the face of extensive debate on an issue.1

There is now a large literature that attempts to model polarization in the socio-political
realm.2 The general take-away from this body of work is that polarization can occur when

Email addresses: cailino@uci.edu (Cailin O’Connor), weatherj@uci.edu (James Owen Weatherall)
1Some authors use the term “polarization”, or more specifically, “belief” or “attitude polarization”, to

refer to the more limited phenomenon in which two individuals with opposing credences both strengthen their
beliefs in light of identical evidence. Other authors, particularly in psychology, use “group polarization” to
refer to situations in which discussion among like-minded individuals strengthens individual beliefs beyond
what anyone in the group started with. As noted, we are using the term “polarization” in a sense common
in political discourse, to describe situations in which beliefs or opinions of a group fail to converge towards
a consensus, or else actually diverge, over time. Bramson et al. (2017) differentiate between ways one might
define or measure polarization in this more general sense.

2We survey this literature in section 3; see (Bramson et al., 2017) for a review.
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agents influence each others opinions, but where the degree of this influence depends on the
similarity between agents’ opinions. This sort of situation can generate feedback loops that
stabilize polarization. Subgroups form where actors share beliefs and, as a result, are only
influenced by those in their group.

The models considered in this literature do not generally treat beliefs as having different
truth-values, and agents do not influence one another by sharing evidence supporting their
beliefs. In other words these models show how polarization can emerge from various opinion
dynamics, but not how polarization can persist in the face of evidence demonstrating that
acting in accordance with one belief yields a distinct advantage.3 In many cases of polariza-
tion, this seems appropriate, since the underlying positions of those involved are motivated
by moral, religious, or political values. On abortion, for instance—another issue on which
the U.S. public is polarized—religious beliefs motivate many of those who oppose legalized
abortion, while those who support it are often driven by feminist values. Similarly, social and
political values play a role in attitudes about climate change: liberals tend to believe that
central governing bodies have a responsibility to protect shared environmental resources,
while conservatives argue that a free market will generate suitable responses endogenously,
without government intervention.

But differences in values of this sort are not the only important aspect of polarization.
For instance, in the case of climate change, it is not merely that there are disagreements
concerning what policies to adopt; there is also polarization in belief concerning matters
of fact about the causes and likely consequences of global warming. This is so despite the
fact that there is ample evidence available and the long-term consequence of injudicious
policies are potentially severe. Indeed, polarization can appear even in communities that
broadly share values—including in scientific communities, which can become deeply divided
over issues such as what foundational theory to adopt, what methodology is appropriate,
or what the truth of the matter is in some case. For instance, as we will discuss below,
researchers working on Lyme disease seem to have polarized. How can agents acting under
such conditions reach opinions that are so deeply divided?

Our aim in this paper is to show how a group of scientists who share evidence, and who
have the same aims and values, can nonetheless become polarized. We do so by presenting
a simple model, based on the network epistemology framework developed by economists
Bala and Goyal (1998) and introduced to philosophy of science by Zollman (2007), in which
agents gather and share evidence concerning which of two possible actions yields a better
expected payoff. In this model, all agents have the same preferences and there is a fact of
the matter concerning which action is preferable. The agents all have access to the same
evidence, which they continually gather and use to update their beliefs. However, they treat
evidence from other agents as uncertain, using a simple heuristic according to which agents
whose beliefs are distant from their own are judged to be more epistemically unreliable. As
we show, epistemic communities in which agents employ this heuristic can become stably
polarized. As a result of this polarization, the accuracy of scientific beliefs in the community

3As we discuss below, there are some exceptions to this generalization—most notably, in work by Olsson
(2013)—but the model we present here is substantially different and, we believe, more perspicuous.
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is typically worse.
Furthermore, while we do not claim that employing this heuristic is individually rational,

we do claim that it is justifiable and that similar heuristics are widespread. Indeed, it is
essential to scientific practice that scientists make judgments concerning the reliability of
other scientists’ work, and condition their beliefs accordingly.4 That this sort of judgment
can, at least in some cases, lead to polarization is therefore striking—and can help explain
why we observe polarization in real scientific communities. It also provides a novel example
of how individually justifiable epistemic heuristics can lead to group-level behavior that is
not truth-conducive (Mayo-Wilson et al., 2011).

In the next section, we present the case of Lyme disease, wherein a scientific community
has become highly polarized. Section 3 will describe other models of polarization and then
introduce the model we will analyze here. In section 4 we describe the main results of the
paper, which are that treating the evidence produced by those with whom we disagree as
uncertain can lead to polarization, and that this impairs the ability of a scientific community
to achieve true beliefs. In the conclusion, we discuss implications of the work presented here,
both for philosophy of science and for social epistemology.5

2. Chronic Lyme and the Polarization of Science

Rheumatologist Allen Steere first identified Lyme disease as a new, tick-borne illness during
the mid-1970s. At the time, hundreds of people in Lyme, Connecticut and surrounding
communities were suffering from a mysterious set of maladies—joint pain, arthritis, extreme
fatigue, headaches, brain fog. One of these sufferers, Polly Murray, was referred to Dr.
Steere.6 Diligent work by Steere and others eventually linked these symptoms to tick bites,
and not long thereafter the spirochete responsible was isolated by medical entomologist Willy
Burgdorfer, and named Borrelia burgdorferi is his honor (Steere et al., 1977; Burgdorfer
et al., 1982).

This discovery was a savior for patients like Polly Murray and others infected with Lyme.
Since the spirochete is treatable with antibiotics, a course of therapy was often enough to
make a drastic difference in the lives of those who had been infected. Despite this, by the
1990s, Steere was receiving death threats from angry Lyme patients. How did the man whose
discoveries paved the way for everything we know about Lyme end up a reviled figure by the

4Psychologists often appeal to motivated reasoning in explaining polarization. For example, humans tend
to engage in confirmation bias, which involves seeking out and assimilating new information supporting their
already deeply held beliefs (Lord et al., 1979). But that is not what is going on here: agents to not selectively
update on evidence that is probable given their current beliefs; they do so on the basis of their judgments
about the source of the evidence, irrespective of what the evidence tends to support. We take this to be
more epistemically justifiable—which makes the appearance of polarization in the presence of this heuristic
more surprising.

5This paper forms part of a larger project on the social dynamics of false belief in epistemic communities;
see, for instance, Weatherall et al. (2017), O’Connor and Weatherall (2017), and O’Connor and Weatherall
(2018) for discussion of related themes.

6This history was reported in the New York Times article ‘Stalking Dr. Steere over Lyme Disease’,
published June 17, 2001.
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very patients he sought to cure? In the early 1990s, Steere became worried that Lyme was
being treated as catchall for patients with Lyme-like symptoms who could not be otherwise
diagnosed. He also worried that harmful courses of antibiotics were being prescribed to
patients who did not need them. After investigation, he began to advocate for more careful
diagnosis and treatment of Lyme (Steere et al., 1993). Thus began the “Lyme Wars”. At
the heart of this now decades long scientific debate are 1) the question of whether Lyme
can persist in patients after a short cycle of antibiotics, and 2) the question of whether long
term doses of antibiotics are successful in improving the symptoms of Lyme patients.

On one side are thousands of patients, and the physicians who treat them, who say that
“chronic Lyme” is ruining their lives. They describe debilitating symptoms similar to those
known to occur if Lyme goes untreated and enters the late stage of the illness—arthritis,
pain, fatigue, and a host of cognitive problems. Many of them seek treatment from “Lyme-
literate” physicians, who claim that intravenous, long term courses of antibiotics are both
necessary and successful in treating these patients. As they point out, studies have shown
that even after intense courses of antibiotics, macaques and some other species can still test
positive for Lyme and can even reinfect ticks with the Lyme spirochete (Embers et al., 2012;
Straubinger et al., 2000). Dramatic documentaries, such as the 2008 Under Our Skin, and
first hand accounts such as Allie Cashel’s 2015 Suffering in Silence describe the horrors of
chronic Lyme, and portray the doctors who do not believe in it as either incompetent or
under the sway of insurance firms who do not want to pay for long courses of treatment.

On the other side of the debate are the majority of physicians, including Steere, who
believe that chronic Lyme is actually a combination of post-Lyme syndrome–a set of symp-
toms that are the result of previous damage by Borrelia burgdorferi rather than current
infection—and other diseases, such as fibromyalgia and chronic fatigue syndrome, that are
themselves poorly understood (Steere et al., 2004). They point out that random control
trials have shown no benefit for long term antibiotic treatment for chronic Lyme patients
(Klempner et al., 2001), and that, in many cases, those who are sick do not test positive for
Lyme.

In the case of chronic Lyme, researchers have apparently failed to approach consensus,
and even have even become increasingly convinced that those on the other side are not to be
trusted. In other words, they are polarizing in much the way the public sometimes polarizes
on political and social issues. The surprising thing about this case, though, is that the values
and goals are the same on both sides of the debate. Both establishment physicians and Lyme
literate ones seem to want to reduce the suffering of Lyme patients.7 They all have access
to similar sorts of evidence—they see and treat patients with Lyme and they read the same
articles. In a case like this, we might expect beliefs in the group to start converging to a
consensus. The fact that this does not seem to be happening presents a puzzle.

One striking feature of the Lyme disease research community, as noted, is profound
mistrust between groups adhering to different views concerning the status of chronic Lyme
disease. Members of each these two groups have access to the evidence gathered by the other,

7It is, of course, possible that there are researchers involved in Lyme research whose conclusions are
influenced by industry funding. This does not seem to be the case for most of the physicians involved.
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but they appear to discount it. Establishment physicians think Lyme literate physicians are
quacks, and so put little weight on their clinical experience and, arguably more rigorous,
published studies. Lyme literate physicians think that Steere and his collaborators are
swayed by industry interests, and are producing biased science. As we will describe in
the next section, this sort of relationship between belief and trust is what often generates
polarized opinions in models of polarization. What is novel here is the observation that
we can get these sorts of polarized outcomes in a model of a scientific community where
researchers are explicitly motivated only by epistemic aims, where they gather evidence
from the world, and where they use reasonable heuristics in determining how to update
their beliefs in light of new evidence.

3. Modeling Polarization

Empirical work suggests that, in general, discussion tends to lead to greater agreement
among individuals.8 Many models of influence between people attempt to capture and
explain this tendency towards shared opinions (Axelrod, 1997; Hegselmann et al., 2002).
The question for those interested in polarization is why, despite this general tendency, some
groups never converge to uniform beliefs. The key ingredient to generating polarization in
models of opinions dynamics is to make the social influence of one individual on another
dependent on how similar their beliefs or positions are. Many models have been developed
in which incorporating this sort of dependence can produce polarization.9

In an influential example, Hegselmann et al. (2002) assume that individuals in a group
hold some opinion between 0 and 1.10 These individuals update their opinions over time by
averaging them with group members, but they only include group members whose current
beliefs are within some distance, ε, of their own. As they show, as ε grows smaller, groups
will fail to reach consensus on an opinion, and instead form subgroups, each of which jointly
holds the same opinion.11 If similarity of belief is not taken into account in determining
influence, on the other hand, i.e., if ε = 1, the group always converges to consensus.12 Macy
et al. (2003) look at networked agents who adopt binary opinion states, and whose states
are influenced by neighbors depending on weights they assign to them. The weights in turn
update based on the similarity of opinion states, leading to polarized groups who do not
trust each other. Baldassarri and Bearman (2007) assume that individuals only interact
with those who have similar interests and similar opinions, and observe both polarization of

8For example, Festinger et al. (1950), in a classic study, showed how location around housing courts, and
thus social interaction, importantly determined opinions in a study of MIT students. Students tended to
adopt the beliefs of their neighbors.

9Again, for a philosophically sensitive review of models of polarization see (Bramson et al., 2017).
10In work that predates this, Axelrod (1997) provides a model where cultures are represented by variants

(lists of numbers) and where similarity of these variants determines how likely they are to adopt other
variants from neighbors in a grid. In this way ‘cultural similarity’ determines cultural influence. As he
shows, stably different cultures, which we might think of as polarized in some sense, can co-exist if they
have no overlap and thus do not influence each other at all.

11They label the outcome where just two subgroups with divergent opinions emerge as ‘polarization’.
12In this tradition, see also Deffuant et al. (2002); Deffuant (2006).
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beliefs and homophily—where two groups stop interacting with each other based on their
different beliefs.13

The models just described all concern cases in which actors choose between opinions or
beliefs that are equally good, in the sense that there are no external reasons to hold one
belief over another. Agents do not seek evidence from the world in forming their beliefs, and
beliefs play no role in action. There are two models in the literature which look instead at
cases where one belief is arguably superior, both focused on group deliberation. Singer et al.
(2017) look at a deliberating group that shares “reasons” for belief—positive and negative
numbers which they add up to draw a conclusion—chosen from some fixed set. They show
how conclusions can polarize for subgroups when individuals only forget those reasons that do
not cohere with their most likely current conclusion. In this model, however, the ‘’‘reasons”
do not correspond to evidence gathered from actually performing actions informed by the
belief.

The model most like ours is from Olsson (2013), who use the Laputa network episte-
mology framework to investigate polarization.14 In their model, agents deliberate over a
proposition p, and test the world with varying degrees of accuracy. They use Bayesian
updating to adjust their credences in p based on their evidence and others’ statements of
belief. They can adjust their levels of trust in others’ statements (and thus their updating)
based on whether they have similar beliefs. The key difference between the models is that
their agents communicate by stating their beliefs. Ours actually share unbiased evidence
with each other—and yet, as we will see, polarization still appears.15

3.1. Epistemic Networks and Uncertain Evidence

As noted above, we work in the network epistemology framework developed by Bala and
Goyal (1998). In this model, agents decide between two actions that have different prob-
abilities of yielding some fixed payoff. The agents choose which action to take based on
their current belief about which has the highest expected return. That belief, in turn, is
informed by the success of their own past actions and those of other agents as shared in a
social network. Zollman (2007) adapts this model to represent the emergence of scientific
consensus.16

13In addition, a number of modelers have shown how belief polarization—updating in different directions
for the same evidence—can be rational. This can occur under the right conditions for agents with different
priors or with different background beliefs (Dixit and Weibull, 2007; Jern et al., 2014; Benôıt and Dubra,
2014).

14This framework is first presented in Angere (2010).
15In addition, the way their agents gather evidence arguably less closely mimics the scientific process as

they receive private signals from a distribution, rather than sampling data points.
16This framework has been used in philosophy of science by Zollman (2010); Mayo-Wilson et al. (2011);

Kummerfeld and Zollman (2015); Holman and Bruner (2015); Rosenstock et al. (2017); Weatherall et al.
(2017); O’Connor and Weatherall (2017, 2018). Zollman (2013) provides a review of the literature up to
2013. The version of the model we consider here follows Zollman (2007) very closely, because unlike in later
versions considered by Zollman and others, the beliefs of the agents in the 2007 model are captured by a
single number.
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In more detail, the basic model consists of a network of agents, each of whom is connected
to some or all of the other agents in the network. The agents decide between two actions:
action A (All right) and action B (Better). Action A is well understood, and all agents
know that performing it generates success with probability .5. The success rate of action
B is uncertain: agents know that action B is either slightly better (success rate of .5 + ε)
or slightly worse (success rate of .5− ε), but they do not know which case obtains. In fact,
action B has a success rate of .5 + ε, and so action B is preferable to action A. The goal is
for agents to determine which of the actions has a higher success rate. This is an example
of a “two-armed bandit problem”, so called because it matches a case where actors must
choose one of two arms on a slot machine that yield payoffs with differential rates.

Each agent in the network has some credence between 0 and 1 that action B is better
than action A. An agent with credence .54, for example, thinks there is a 54% chance that
B is the better action. These credences are initially randomly assigned. In each round of
simulation, actors choose the action that they believe has the highest expected outcome.
If their credence is < .5 they choose action A, otherwise action B. (In what follows, we
sometimes say that an agent “accepts theory A” if their credence is < .5, and thus they
believe action A is better; otherwise they “accept theory B”.) They then perform their action
some (fixed) number of times, n, and observe how often it succeeds. Agents subsequently use
Bayes’ rule to update their credence based on both their own experience, and the experiences
of their neighbors on the network. Since there is no uncertainty regarding action A (it is
known to succeed exactly half the time), performing action A provides no information to
the agents; thus, agents’ beliefs change only if they or at least one of their neighbors test
theory B.

As agents update their beliefs over time, one of two things happens. Either all agents
come to (erroneously) accept theory A, and so do not gather new, informative evidence, or
else all agents come to accept theory B with very high credence, so that the chances they
ever revert to incorrect beliefs become vanishingly small. In other words, the network tends
to arrive at a consensus, wherein all agents (approximately) stably accept either the true
theory or the false theory.

In the Bala-Goyal model as we have been describing it, all agents treat evidence gathered
by themselves and other agents in the network in the same way. But as we saw in the
case of Lyme disease discussed above, under some circumstances, members of a scientific
community stop trusting the evidence produced by other colleagues.17 In such cases, agents
do not update their beliefs on evidence produced by other agents in the way that they do
on the evidence they produce themselves. To capture the dynamics of such a situation, we
alter the model studied by Bala and Goyal (1998) and by Zollman (2007) so that agents
treat evidence produced by other agents as uncertain. These agents then update their beliefs
using Jeffrey’s rule instead of Bayes’ rule.

17As we noted in the Introduction, exercising judgment concerning the reliability of studies produced by
other scientists is an essential part of scientific practice—particularly given that some other members of a
community may be biased, or even intentionally intending to mislead others. For instance, they may be
influenced by industrial funding sources (Holman and Bruner, 2015; Weatherall et al., 2017).
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Jeffrey conditionalization, unlike strict Bayesian conditionalization, allows actors to up-
date beliefs in light of uncertain evidence.18 We use it in the present case as follows. Suppose
that Ian tells Jill he observed some evidence, E. Further suppose that Jill does not fully
trust Ian’s data gathering practices, meaning she has credence Pf (E) ≤ 1 that the evidence
he described obtained. Under Jeffrey conditionalization Jill will update her beliefs, in light
of Ian’s evidence, using the following formula:

Pf (H) = Pi(H|E) · Pf (E) + Pi(H| ∼ E) · Pf (∼ E)

This equation says that Jill’s final belief in the hypothesis, Pf (H), is equal to her credence
that the evidence is real, Pf (E), multiplied by the initial belief she would obtain via strict
conditionalization on that evidence, Pi(H|E), plus her credence that the evidence did not
occur, Pf (∼ E), multiplied by the initial belief she would have by strict conditionalization
if it had not occurred, Pi(H| ∼ E).

The Jeffrey conditionalization formula alone is not sufficient to fix Jill’s belief; we also
need to specify the credence that Jill assigns to the evidence, which we assume to be con-
ditional on its source. We consider two ways of doing this. In both cases, we take Jill’s
credence to be a decreasing function of the difference in beliefs between the two agents. On
the first approach, we suppose that agents trust those with more similar beliefs, but that
they completely ignore evidence from agents whose beliefs diverge by too much. On the
second approach, we assume that when Ian’s beliefs are very far from Jill’s, she actually
distrusts him so far as to update away from what his evidence seems to show. (Likewise,
Cook and Lewandowsky (2016) find that conservatives engage in contrary belief updating
upon learning about the scientific consensus on climate change.)

The idea here is that as a responsible scientist, Jill must assess the reliability of the
evidence produced by her colleagues. There are many ways in which she might attempt to
do this, but one plausible heuristic is to evaluate the reliability of the evidence on the basis
of her perception of Ian’s past epistemic success. Jill’s own beliefs are her clearest guide to
evaluating whether Ian has succeeded in forming reliable beliefs, and so in cases where their
beliefs differ, Jill supposes that Ian must be less reliable.

We will make the second approach, where evidence supporting theory B might actually
decrease credence in that theory, precise first, as in some ways the formula is simpler. Here,
we use the following function to characterize the uncertainty that Jill assigns to evidence
produced by Ian:

Pf (E) = max({1− d ·m · (1− Pi(E)), 0}). (1)

Here Pi(E) is Jill’s initial probability of the evidence occurring, given her beliefs about
theory A and theory B; d is the absolute value of the difference between the Ian and Jill’s
credences; and m is a multiplier that captures how quickly agents become uncertain about
the evidence of their peers as their beliefs diverge. Notice that d will vary between 1, if one
agent has complete belief in theory B and the other in theory A, and 0, if both agents have
the same credences in theory B. As d approaches 0, Pf (E) approaches 1, meaning that the

18See Jeffrey (1990, Ch. 11).
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agent thinks the evidence is more and more certain. (Observe that every agent is distance 0
from themselves, and so they treat their own evidence as certain.) In this case, Jill’s update
rule approximates strict conditionalization very well.

As d increases, meanwhile, at some point d ·m = 1. (If m = 2, for example, this occurs
when d = .5.) At this point the certainty that Jill assigns to Ian’s evidence is simply equal
to the Pi(E)—i.e., to Jill’s prior probability of the evidence occurring. In other words, she
completely ignores evidence from Ian, in the sense that her credence about theory B will be
unchanged in light of the evidence from Ian. As d further increases, so that d ·m > 1, Pf (E)
becomes smaller than the prior belief that the evidence would occur, Pi(E). In other words,
Jill believes that the evidence is less likely than she would have otherwise simply because
Ian shared it. Finally, since Pf (E) is to be interpreted as an agent’s credence, we require
that Pf ≥ 0.

For the approach, where agents simply ignore evidence gathered by researchers they do
not trust, we use the following alternative function to describe Jill’s uncertainty about Ian’s
evidence:

Pf (E) = 1−min({1, d ·m) · (1− Pi(E)}). (2)

In this formula, we do not let d ·m grow larger than 1. This means that as beliefs diverge,
there is a point, d ·m = 1, after which agents simply ignore the data of their peers, always
assigning Pf (E) = Pi(E). The multiplier m then determines how far apart beliefs have to
be before individuals ignore the evidence of another researcher.

In what follows, we will refer to the approach using Eq. (1) as the one with “anti-
updating”; the approach using Eq. (2) will be the one with no anti-updating. Figure 1
shows an example of what each of these functions would look like for an agent with prior
probability P (E) = .75 and m = 2. Up to a distance d = .5, the two functions are the same,
and certainty in evidence decreases linearly in distance between beliefs. After that, the
anti-updater thinks it is less likely the evidence occurred than her prior would suggest, and
the agent who ignores data thinks the evidence is just as likely as her prior belief predicts.

Before moving on to our results, we remark on a possible objection to Eqs. (1) and (2),
on the grounds that they are unprincipled, or even arbitrary, ways of assigning credences.
We do not mean to argue that either formula precisely captures some feature of human
psychology. Rather we use them because they are simple, monotonic functions capturing
the key idea that Jill’s credence in evidence produced by Ian decreases as the distance in
their beliefs increases. The results we describe should be qualitatively similar were we to
adopt different functions, as long as Pf (E) decreased sufficiently quickly with d.19

19Of course, there is an arguably more principled way of doing all of this, which would be to suppose
that there is some probability distribution that describes Jill’s credences about Ian’s dispositions to share
E given that E did and did not obtain, given Jill’s own prior Pi(E) and d, and then have her use Bayes’
rule to find her posterior Pf (E), given that Ian reports E. But observe that doing this in detail would
require an enormous number of modeling choices that would also be largely arbitrary, and at the end of
the day, one would find a formula with the salient features of (1) and (2) (i.e., a monotonically decreasing
function in d whose range lies in the relevant interval). More, one can always use Bayes’ rule to work
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Figure 1: An agent’s uncertainty about evidence as a function of distance between credences both for
anti-updating and simply ignoring evidence, m = 2 and P (E) = .75.

4. Results

Our model involves several parameters. First, we vary the size of the scientific community,
testing values for K = 2, 6, 10, 20. We also vary the difference in success rate between
the well-understood action A and the better action B. The probability that A succeeds is
always PA = .5, and for the probability that B pays off we consider PB = .55, .6, .7. This
parameter controls how equivocal evidence will tend to be. As PB approaches PA, the two
actions become increasingly difficult to discriminate, and the number of spurious results,
i.e., results suggesting that action A is actually preferable to action B, increases. We vary
the number of tests each scientists runs every round, n = 1, 5, 10, 20, 50, 100. This parameter
will also influence, on average, how many spurious results occur and how much they affect
belief. Smaller values of n are analogous to lower powered studies which are more likely to
yield misleading results.

Finally, we varym, the multiplier that determines how quickly scientists begin to mistrust
those with different beliefs, looking at values of 0, 1, 1.1, 1.5, 2, 2.5, 3. When m = 0, agents do
not discount evidence based on belief at all. When m = 1, the agents never fully discount the
evidence of other scientists (or engage in anti-updating), though they become less trusting
of the data as beliefs diverge. When m is higher, agents completely ignore or else anti-
update on individuals whose beliefs are more than some distance away from their own. (For
instance, as demonstrated in figure 1, if m = 2, this threshold is .5.) One thing we do not

backward from Eq. (1) or Eq. (2) to a relationship between the conditional probabilities P (Ian shared E|E)
and P (Ian shared E| ∼ E) that must hold if we assume that Jill had such credences and that she arrives
at Pf (E) via strict conditionalization. And so these formulae can themselves be interpreted as reflecting
precisely the results of this procedure for (families of) distributions that might represent Jill’s beliefs about
Ian’s dispositions.
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vary is the network structure of the model. We test only complete networks, meaning that
agents communicate with every other member of their community. This means that when
agents polarize, it is in spite of the fact that they receive data from all their peers, and is
not a result of differential access to information.20

For each combination of parameter values we ran 1k trials of simulation, until one of three
measurable outcomes was reached— communities arrived at correct consensus (all beliefs
were greater than .99), incorrect consensus (all beliefs were less than .5), or polarization.
We will say more about what the particular distributions of beliefs look like in various cases,
but a coarse grained measure of whether polarization has occurred involves cases where
all agents have credences in theory B that are either higher than .99, meaning they are
vanishingly unlikely to revert to the incorrect theory A, or else have credences below some
threshold values such that despite the presence of correct believers in their scientific network
they stably maintain belief in the incorrect theory A.

4.1. Ignoring Data

Let us first consider the version of the model where agents ignore data shared by those with
very different beliefs. Under many circumstances we observed stable polarization in these
scientific communities. In this version of the model, polarization involves the emergence of
two subgroups, one whose members all have credence > .99, and the rest with a variety
of stable, low credences, such that they prefer the worse theory. (More precisely, a stable
outcome is one in which every agent either (a) has credence > .99 or else (b) has credence
<= .5 such that their distance to all agents whose credence is > .99 satisfies m ∗ d >= 1.)
Because the agents with low credences are outside the “realm of influence” of those testing
the informative theory, they do not update their beliefs.

To reiterate, when this model is run without uncertainty based on divergence of beliefs
(when m = 0), every simulation will arrive at full community consensus usually on the
correct theory, and sometimes on the wrong one.21 In our models, on the other hand, over
all parameter values, we found that only 10% of trials ended in false consensus, 40% in true
consensus, and 50% in polarization. These values should not be taken too seriously, since pa-
rameter choices influence where and when polarization happens, but the point is that adding
evidential assessments based on shared belief dependably generates stable polarization.

The multiplier determining how quickly scientists discount the evidence of others, m, also
determines how often polarization occurs. Of course, this is no surprise since the mechanism
necessary to generate polarization is strengthened and weakened via this multiplier. Figure
2 shows this effect for simulations with different numbers of agents.22 As is clear, higher m

20Note that this means that distance in belief may be reconceptualized as a weight on each edge of the
network, so that initially there are random weights assigned, and then over time the network evolves so that
some connections become stronger and others weaker. In this sense, the model actually considers a dynamic
network.

21The probability of correct versus incorrect convergence varies based on parameter values. See Zollman
(2007, 2010); Rosenstock et al. (2017) for more.

22For this figure the number of pulls per experiment is n = 50, and the probability that the better theory
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Figure 2: Increasing m increases probability of polarization. n = 50, pB = .7.

leads to higher polarization. As we also see in this figure, the chance of reaching a polarized
outcome increases in community size. This is simply because with a larger group the chances
are better that at least one agent stably disagrees with the rest.

This sort of polarization will only occur when m is high enough that there are credences
an agent could hold and be entirely unaffected by evidence coming from the part of the
community that converges to high credence in theory B. For instance if m = 1.1, all agents
update on the evidence of almost all other agents. But, an agent with credence .04 will not
update on evidence from an agent with credence .99 at all, meaning polarization is possi-
ble. When m = 1, on the other hand, there are no stable polarized outcomes. Eventually
all agents will reach consensus on either theory A or theory B. But even in this case, Jef-
frey conditionalization can lead to transient polarization—the temporary existence of two
subgroups one of which has very high credences (> .99) and the other with credences < .5.

Moreover, although the whole population will always converge to some consensus in
this case, the time to convergence is substantially longer than when m = 0. And in the
meantime there is a potentially very long period during which some portion of the community
is mistrustful of an emerging consensus. Figure 3 shows the average speed at which a
community reaches consensus when m = 1 or m = 0, for various numbers of pulls, n.23

Notice that the y-axis is on a log scale to make the trend more clear. For all values, adding
uncertainty about the evidence of those with different beliefs slowed convergence to consensus
by a factor of 2 or 3 on average.

This occurs because the addition of uncertainty about evidence and Jeffrey condition-
alization to the model creates new updating dynamics. The key, here, is that although all

pays off is pB = .7. This trend, and others reported in this section, are general across parameters unless
otherwise noted.

23For this figure, population size was 6 and pB = .55.
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Figure 3: Even when m = 1, convergence to consensus is slowed by uncertainty over evidence compared to
when m = 0. pB = .55, population size = 6.

agents in our model have access to the same evidence every round of simulation (because
they are on complete networks) they all treat that evidence differently. Say an agent with
credence .55 happens to gather a string of data spuriously supporting theory A, and another
agent with credence .9 happens to gather a string of data that correctly supports theory B.
Despite all agents receiving the same data, those with already low credences will tend to
decrease their credence further, while those with high credences will increase them in the
same round.

This sort of behavior can lead to feedback loops, by which agents who have initially more
similar credences gradually diverge—and then trust one another less as a result. For instance,
consider two agents with initial credences .6 and .3. The .6 agent tests the informative action
and generates results indicating that theory B is, in fact, better. They update by increasing
their credence in theory B. The .3 agent also updates their credence in theory B, but by
a much smaller amount because the distance between them (.3), leads her to discount the
evidence. Say that their new credences are .88 and .45. The .88 agent tests the informative
theory again. This time, again, they both update in the same direction, but the distance
between them is now .43, so the .45 agent is more mistrustful than before. Via this sort of
process, a belief gap and a trust gap can emerge between those who have become converts
to a new theory and those who remain skeptical.24

There is one last result to mention, which is that the size of the multiplier determines
the proportion of the community, on average, that ends up holding the false belief when
polarization happens. For large multipliers, and thus higher levels of mistrust, more agents
tend to end up believing in the worse theory A. If they are initially skeptical, they also do

24The values in this example were calculated assuming that pB = .6, n = 10, and that the .6 agent sees 7
successes in their test.
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Figure 4: Average percentage of false beliefs in scientific communities for different parameter values as a
function of m.

not trust those who take the informative action, and so tend to stick with their skeptical
beliefs. For smaller multipliers, and so more trust in others, a larger percentage of agents
have beliefs that are pulled up to the better theory by those testing this theory. What this
means is that, in general, mistrust in others with different beliefs results in a much higher
degree of incorrect belief than would otherwise occur.

Figure 4 shows the average number of individuals who end up stably convinced in the
incorrect theory as the multiplier increases. Each data point in this figure is the percentage
of false beliefs across runs of simulation for one set of parameter values. As is clear, as the
multiplier m increases, the average percentage of false beliefs does too. A lack of trust in
others based simply on their beliefs leads to a community in a worse epistemic state. Of
course, this is in a model where all actors are epistemically reliable in the sense that they
gather and share dependable data, and there are no biased agents in the scientific network.
In the conclusion, we will discuss when and why it might be a good thing not to trust those
in a scientific network.

4.2. Anti-updating

We now turn to the case where agents are so mistrustful of those with different beliefs that
they sometimes expect others to actively seek to mislead, and thus use Eq. (1) to assign
credences to evidence reported by others. In this case, again, we find that communities
reach stable polarization. The actual outcomes are somewhat different with anti-updating.
Mistrust in those with high credences now drives the beliefs of those with low credences
further and further down over time. This is analogous to the conservative who, upon learning
about scientific consensus about climate change, updates to greater skepticism about climate
change (Cook and Lewandowsky, 2016). When polarization occurs in these models, then, the
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Figure 5: Models where actors anti-update tend to have a larger portion of false beliefs, as a result of
increased polarization. pB = .7, n = 10, population size = 20.

agents form two subgroups whose credences are either > .99, or < .01, and are increasingly
unlikely to ever leave these ranges.

In models with anti-updating, polarization arises slightly more often than in models
without it. This occurs when there are individuals who might have been positively influ-
enced by their own results, or those of nearby agents taking the informative action, but
who are so mistrustful of those with high credences that their anti-updating overwhelms
the good evidence reaching them. In cases without anti-updating these individuals might
eventually reach the correct belief, but in the presence of anti-updating they do not because
the comparative zealots are too influential.

Additionally, anti-updating tends to increase the number of individuals arriving at the
incorrect belief in comparison to simply ignoring others’ data. Figure 5 shows the percentage
on average of agents arriving at true and false beliefs in the two types of model for a particular
set of parameter values.25 As is obvious in this case, anti-updating leads to worse beliefs,
and this is more dramatic as m increases. Anti-updating means that more individuals who
might be convinced by other moderates like themselves end up driven to low credences.

5. Conclusion

Mayo-Wilson et al. (2011) describe what they call the Independence Thesis, which consists
in the claims that, “rational individuals can form irrational groups, and, conversely, rational

25This figure is for a community of size 20, PB = .7, and n = 10. The significance of the difference between
the anti-updating case and the ignoring case varies across parameter values. In a few cases the community
did slightly better on average in the anti-updating case, usually for small communities where results were
more stochastic.
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groups might be composed of irrational individuals” (653). They point out that the entire
field of social epistemology is undergirded by the assumption that community and individual
rationality come apart, meaning that in order to best understand the progress of knowledge,
we need to focus on the group level rather than just on individual rationality.26

The models here fall broadly under the heading of showing how what makes sense for an
individual, and what makes sense for a group, can come apart. Clearly, treating the evidence
of those with different beliefs as uncertain is unsuccessful from the group-level standpoint.
The greater m is, the worse the average beliefs of the scientists in our models. And when
actors anti-update, this situation is exacerbated.

On the other hand, while we might not want to label it as rational with a capital “R”,
there is something reasonable about deciding on an individual level whose evidence to trust
on the basis of their currently held beliefs. Suppose your Uncle Matt tells you that Hillary
Clinton personally had 46 journalists killed, and that he has the documents to prove it. If
you also know Uncle Matt believes that your aura will be more aligned when there is lots of
quartz in the ground, you might take his documents less seriously, and with good reason. If
your pediatrician tells you that cow’s milk has “no nutrition in it”, it is, again, reasonable not
to trust other data she might later share. In the case of scientists, those who directly uptake
evidence without considering the source might even be considered epistemically irresponsible.
Most scientists do not trust the evidence of known “quacks”, and for good reason.

Nonehtless, one possible take-away from the models presented here might be that in a
scientific community we should do whatever we can to drop this heuristic, and evaluate
all evidence in the same way. But notice that these models do not capture the type of
situation in which discounting the evidence of others makes sense. In some cases, individuals
in a scientific community intentionally mislead peers for their own benefit. In 1954, for
example, the Tobacco Industry Research Committee was created with the stated goal of
investigating the health effects of smoking. In fact the committee was a propaganda machine
created by the heads of major tobacco firms, but from the point of view of those receiving
information from them, there was little to distinguish this source from others.27 Among
their activities was selectively sharing intentionally misleading results, with the intention of
manipulating beliefs. In such cases, one would certainly prefer to evaluate the evidence they
share differently from evidence shared by unbiased scientists.

Holman and Bruner (2015) investigate a network epistemology model much like the one
we look at here, but which includes an “intransigently biased agent”. The biased agent
only tests the worse theory, and when they do so, their probability of success is artificially

26As Mayo-Wilson et al. (2011) prove using network epistemology models similar to the ones we employ
here, there are rules for exploration in such models that are ideal for the individual, but not the group, and
vice versa. Other formal work in social epistemology focuses on this idea as well. Both Kitcher (1990) and
Strevens (2003), for example, explore how to generate an ideal division of cognitive labor in science despite
the individual rationality of always working on the most promising theory.

27This history is drawn from Oreskes and Conway (2010), who document in great detail the work done
by big tobacco to obscure the emerging consensus over the health dangers of smoking. See also Holman and
Bruner (2015), O’Connor and Weatherall (2018), and Weatherall et al. (2017).

16



inflated.28 Holman and Bruner find that such an actor tends to influence the beliefs of their
community in a negative way, but that if other scientists have an option to devalue their
evidence the problem is ameliorated. Their model incorporates this devaluation by assuming
there are weights on every network edge. When a scientist receives new evidence, they do
a t-test based on their current credence in the theory. If the evidence seems particularly
unlikely given their beliefs, they reduce their weight on that edge. As they show, “The
problem posed by intransigently biased agents can be alleviated if agents learn to identify
and trust good informants. We have seen that this is not possible in a static network, since
by decree individuals cannot come to ignore their neighbors, thereby allowing a biased agent
to mislead the community” (966). In other words, in the model with industry actors, the
option to ignore others’ data is crucial to the success of the community.

Notably, this ignoring is based on a match between evidence and one’s own credence,
not between another’s credence and one’s own as in our model. As they note some scientists
sometimes end up in the biased agent’s sphere of influence because their credences are
influenced by the biased agent’s evidence, and then the biased evidence looks plausible to
them. This, in itself, is a type of polarization where one part of the community holds a
different belief and takes a different action from the other part, and the two groups have
little influence over each other. It results, as in other models of polarization, from the fact
that there is a dependence between the beliefs of scientists and social influence of the biased
agent. But, despite the possibility of this sort of polarization, the ability to evaluate evidence
based on whether it accords with one’s scientifically informed belief is a good thing in these
models. It significantly improves the epistemic states of scientists.

Additionally, one might want to distrust evidence from scientists who are less depend-
able than others, which, again, is a possibility our models does not address. Barrett et al.
(2017) present a model that approximately captures this sort of situation. They consider
a networked group of agents who all have an option to test the world, with different char-
acteristic rates of success. These agents can also choose to consult the conclusions of their
peers, again with different rates of successful social transmission. They find that if they
allow such networks to evolve, i.e. the agents update their probabilities of testing the world
and consulting other agents based on the success of these strategies, the final results are
often very successful compared to random starting points. In other words, the ability to
choose to listen to those who have been epistemically reliable in the past helps all agents
develop better beliefs. Again, we see a case where it is good not just for the individual, but
also for the group, for agents to ignore the evidence of some peers and favor the evidence of
others.

It seems, then, that while there are multiple heuristics available for treating evidence
from unreliable or biased agents, any of which may seem justified at the individual level,
they can lead to different outcomes at the group level. In our model, scientists condition
their trust in evidence of others based on distance in belief, which is simple but can have

28Observe that there is a subtle difference here from our models, where no agents report their tests of
action A. The Holman-Bruner model is based on the Zollman (2010) model, while ours is based on the
somewhat simpler Zollman (2007) model.
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bad effects for the community at large. The heuristic in Holman and Bruner (2015) involves
updating less strongly on evidence that does not fit with one’s current beliefs, and can also
lead to polarization. But consider a different—albeit more difficult—heuristic: suppose that
scientists learn to be uncertain about sources whose evidence persistently differs, statistically,
from most other sources. These scientists can also avoid being misled, and may do so without
negatively affecting the epistemic performance of the community. The point is that while
belief similarity and confirmation bias are easy heuristics to depend on in deciding who
to trust, there are other ways to make this decision that do not risk driving a community
towards polarization.

We will conclude with a remark about what the models we have presented here can and
cannot tell us about polarization in real scientific communities. Obviously these models are
highly idealized. Real humans, for example, are not perfect Bayesians, and many aspects
go into scientists decisions about what data to trust. Nonetheless, the models can do a
few things. First, they show how, in principle, a situation like that in the chronic Lyme
case can arise. We do not need to suppose that anyone is a bad researcher (in our models
all agents are identical), or that they are bought by industry, or even that they engage in
something like confirmation bias or other forms of motivated reasoning to see communities
with stable scientific polarization emerge. All it takes is some mistrust in the data of those
who hold different beliefs to get scientific polarization. In addition, these models provide a
robustness check on previous models of polarization by showing once more how the general
feature responsible for it—dependence between shared beliefs/opinions/features and social
influence—can lead to polarization even in a situation where it might not be expected
because there are clear reasons to prefer one belief over another, and all agents have the
capacity to directly test their beliefs.
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