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Abstract

Confirmation bias has been widely studied for its role in failures of
reasoning. Individuals exhibiting confirmation bias fail to engage with in-
formation that contradicts their current beliefs, and, as a result, can fail
to abandon inaccurate beliefs. But although most investigations of con-
firmation bias focus on individual learning, human knowledge is typically
developed within a social structure. How does the presence of confirma-
tion bias influence learning and the development of consensus within a
group? In this paper, we use network models to study this question. We
find, perhaps surprisingly, that moderate confirmation bias often improves
group learning. This is because confirmation bias leads the group to en-
tertain a wider variety of theories for a longer time, and prevents them
from prematurely settling on a suboptimal theory. There is a downside,
however, which is that a stronger form of confirmation bias can cause
persistent polarization, and hurt the knowledge producing capacity of the
community. We discuss implications of these results for epistemic com-
munities, including scientific ones.

1 Introduction

Chaffee & McLeod (1973) offered individuals a choice of pamphlets to read
about upcoming elections. They found that individuals tended to choose those
pamphlets that fit with their current preferences, rather than those that op-
posed them. Mynatt et al. (1978) presented subjects with a dynamic system on
a computer and asked them to discover the laws governing this system. They
found that once subjects generated hypotheses about the system they followed
up with tests that would tend to confirm their hypotheses, rather than discon-
firm them. Lord et al. (1979) conducted an experiment on individuals with
strong views on the death penalty. They found that when these subjects were
offered new information regarding the deterrent effect of the death penalty they
were very resistant to changing their opinions. Sweeney & Gruber (1984) sur-
veyed members of the public during the Watergate hearings and found that
those who had voted for Nixon tended to ignore information about the hearings
compared to those who had voted for McGovern.

This handful of studies are just a few of those outlining the pervasive impact
of confirmation bias on human learning. Confirmation bias refers to a cluster
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of related behaviors whereby individuals tend to seek out, to interpret, to fa-
vor, and to selectively recall information that confirms beliefs they already hold,
while avoiding or ignoring information that disconfirms these beliefs. It has been
widely implicated in the prevalence and persistence of false beliefs. Individuals
exhibiting this bias often ignore information that might help them develop ac-
curate beliefs about the world. Most notably, they are susceptible to holding
onto false beliefs which have been discredited (Festinger et al., 2017; Anderson
et al., 1980; H. M. Johnson & Seifert, 1994; Lewandowsky et al., 2012).

Confirmation bias has mostly been studied at the individual level—i.e., how
does it influence individual beliefs and behaviors? Human knowledge and belief,
though, are deeply social. Individuals influence the beliefs of those they interact
with, and are influenced in turn. Ideas and evidence are shared via social
networks in ways that impact further learning and exploration. This leads to
a question: how does confirmation bias influence learning and belief in human
groups? Is it harmful to groups in the same way it seems to be harmful to
individuals?

We use network models to study this question. In particular, we draw on
the network epistemology paradigm first developed in economics by Bala &
Goyal (1998) to study learning in groups. Subsequently, this framework has
been widely employed in social epistemology and the philosophy of science to
study related topics such as the emergence of consensus in scientific communi-
ties (Zollman, 2007, 2010) and the impacts of social biases on group learning
(O’Connor & Weatherall, 2018). Unlike some other sorts of network models, in
this paradigm agents gather and share data and evidence with each other. This
is an important feature in studying confirmation bias since this bias impacts the
way individuals deal with evidence they receive.

We find that in models incorporating moderate levels of confirmation bias,
surprisingly, groups do better than in models where individuals do not exhibit
confirmation bias. Dogmatic individuals who do not easily change positions
force the group to more extensively test their options, and thus avoid pre-
emptively settling on a poor one. This result reflects claims from Mercier &
Sperber (2017) who argue that confirmation bias might be a beneficial feature of
reasoning in a group setting. Our results also echo findings from Zollman (2010)
who shows that groups of “stubborn” individuals sometimes learn better than
more individually rational learners. In our case, confirmation bias can function
as a sort of stubbornness. It leads individuals to keep exploring theories that
might otherwise seem suboptimal, and, in doing so, to sometimes discover that
these theories are actually worthwhile.

There is a downside to confirmation bias, though. While moderate levels
can promote accurate group-level learning, we find that a more robust type
of confirmation bias leads individuals to entirely ignore theories they do not
currently favor. In such cases, communities can polarize, and epistemic progress
is harmed. This suggests that while we may have identified a useful function
of confirmation bias, worries about its harms are still legitimate even when
considered from the group perspective.

The paper will proceed as follows. In section 2 we describe relevant literature,
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first focusing on empirical work on confirmation bias. We then briefly survey
related modelling work. Section 3 outlines our model which incorporates a form
of confirmation bias into epistemic network models. In section 4 we present two
sets of results. The first considers models with a moderate level of confirmation
bias, and shows how this bias can improve learning in a community. The second
considers models where confirmation bias drives polarization, and prevents good
group learning.

In the conclusion we draw some more general lessons for social epistemology
and philosophy of science. One relates to the independence thesis—that irra-
tional individuals can form rational groups, and vice versa (Mayo-Wilson et al.,
2011). Our models provide one more vein of support for this claim. Another
relates to the rationality or irrationality of ignoring data as a Bayesian learner.
Another regards models of polarization. It is increasingly clear that there are
many causal pathways that can lead to community polarization. Which prompts
the question: what can simple models of polarization tell us? We also consider,
generally, how our models should influence our understanding of ideal structures
for scientific communities.

2 Previous Literature

2.1 Confirmation Bias

As noted, confirmation bias is a blanket term for a set of related behaviors in-
volving actors who are unresponsive or resistant to evidence challenging their
currently held beliefs (Nickerson, 1998). Sometimes this bias is referred to as
“myside bias”, since it is not a general preference for confirmation, but a prefer-
ence for confirmation of one’s own beliefs specifically (Mercier & Sperber, 2017).
The models we present here will not adequately track all forms of confirmation
bias. They do, though, reflect behaviors seen by those engaging in what is called
selective exposure bias, as well as those who selectively interpret evidence.

Selective exposure occurs when individuals are more likely to select or seek
out information confirming their beliefs. For example, a person might believe
that moonstones cure cancer. If she shows a preference for reading articles that
confirm this belief over articles that contradict it, then she exhibits selective
exposure bias. Describing the bias in this way allows for some neutrality between
researchers who describe it as an avoidance of disconsonant information (Hart
et al., 2009) and those who describe it as a pursuit of consonant information
(Garrett, 2009; Stroud, 2017).1

The study by Chaffee & McLeod (1973) where participants chose pamphlets
to read about an upcoming election is an example of selective exposure bias.
The study where Sweeney & Gruber (1984) found that participants had been
seeking out information about the Watergate hearings if they preferred McGov-

1Note that in some experiments (and in our models) there is no behavioral difference
between a subject avoiding disconsonant information and pursuing consonant information,
because there are only two sorts of information.
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ern likewise illustrates selective exposure. While selective exposure has been
most frequently studied in the context of politicized information, it need not
be. Johnston (1996) observes selective exposure in participants seeking infor-
mation to confirm their stereotypes about doctors. Olson & Zanna (1979) find
selective exposure in participants’ art viewing preferences. Stroud (2017) gives
a wider overview of these and related results.

As will become clear, our models can also appropriately represent confirma-
tion bias that involves selective interpretation or rejection of evidence. Recall
that in the study by Lord et al. (1979)—where subjects received information
both supporting and opposing the efficacy of the death penalty as a deterrent
to crime—this information did little to change subjects’ opinions on the topic.
This suggests that they were selectively rejecting information that opposed their
point of view. Gadenne & Oswald (1986) demonstrate a similar effect in sub-
ject ratings of the importance of information confirming vs. challenging their
beliefs about a fictional crime. Taber & Lodge (2006) gave participants pairs
of equally strong arguments in favor of and against affirmative action and gun
control. They found that subjects tended to shift their beliefs in the direction
they already leaned, indicating that they were relatively insensitive to counter-
evidence. In each of these cases, individuals were exposed to multiple types of
information, but seemed to selectively reject only the information challenging
their views.

As noted in the introduction, previous authors have argued that various
forms of confirmation bias may be epistemically harmful. Nickerson (1998)
writes that, “Most commentators, by far, have seen the confirmation bias as a
human failing, a tendency that is at once pervasive and irrational” (205). It
has been argued that confirmation bias leads to irrational preferences for early
information, which grounds or anchors opinions (Baron, 2000). In addition,
confirmation bias can lead subjects to hold onto beliefs or delusions which have
been discredited (Festinger et al., 2017; Anderson et al., 1980; H. M. Johnson &
Seifert, 1994; Nickerson, 1998; Lewandowsky et al., 2012). Another worry has
to do with “attitude polarization”, exhibited in Taber & Lodge (2006), where
individuals shift their beliefs in different directions when presented with the
same evidence.

Further worries about the harms of confirmation bias have focused on com-
munities of learners rather than individuals, including scientific communities,
social media sites, and more general groups. Attitude polarization, for example,
might drive wider societal polarization on important topics (Nickerson, 1998;
Lilienfeld et al., 2009). For this reason, Lilienfeld et al. (2009) describe confir-
mation bias as the bias, “most pivotal to ideological extremism and inter- and
intragroup conflict” (391).

When it comes to scientific judgements, researchers may be irrationally re-
ceptive to data consistent with their beliefs, and resistant to data that does not
fit. Koehler (1993) and Hergovich et al. (2010), for example, find that scientists
rate studies as of higher quality when they confirm prior beliefs. If so, perhaps
the scientific process is negatively impacted by these irrational responses to new
evidence.

4



In the age of social media, it has been argued that confirmation bias may
contribute to the formation of “filter bubbles” and “echo chambers”. Pariser
(2011) argues that filter bubbles occur when recommendation algorithms are
highly sensitive to content that users prefer. In the presence of confirmation
bias, this may predominantly involve information that confirms already held
views. “Echo chambers” are a related concept wherein online users seek out
digital spaces—news platforms, followees, social media groups etc.—that mostly
confirm the beliefs and worldviews they already hold. While there is some debate
about the impact of these effects, researchers have argued that they promote
polarization (Conover et al., 2011; Sunstein & Sunstein, 2018; Chitra & Musco,
2020), harm domain specific knowledge (Holone, 2016), and lead to worryingly
uniform information streams (Sunstein & Sunstein, 2018; Nikolov et al., 2015)
(but see Flaxman et al. (2016)).

Is it justified to infer from individual harms of confirmation bias to group
harms? The results we present will complicate the idea that groups must nec-
essarily do worse, epistemically, in the presence of confirmation bias. Before
presenting these results, we will take some time to address previous, relevant
modelling work.

2.2 Previous Models

To this point, there seem to be very few models incorporating confirmation bias
to study its effects on epistemic groups. Geschke et al. (2019) present a “triple
filter-bubble” model, where they consider the impacts of 1) confirmation bias,
2) homophilic friend networks, and 3) filtering algorithms on attitudes of agents.
They find that a combination of confirmation bias and filtering algorithms can
lead to segmented “echo chambers” where small, isolated groups with similar
attitudes share information. Their model, however, does not attempt to isolate
confirmation bias as a causal factor in group learning. In addition, they focus
on attitudes or opinions that shift as individuals average with those of others
they trust. As will become clear, our model isolates the effects of confirmation
bias, and also models learning as belief updating on evidence, thus providing
better structure to track something like real-world confirmation bias.

There are a wider set of models originating from the work of Hegselmann
et al. (2002), where agents have “opinions” represented by numbers in a space,
such as the interval [0, 1]. They update these opinions by averaging with others
they come in contact with. Hegselmann et al. (2002) show that if agents are
only willing to average with those in a close “neighborhood” of their own beliefs,
polarization arises. Individuals settle into distinct camps with different opinions,
and do not influence each other. This could perhaps be taken as a representation
of confirmation bias, since individuals are sensitive to only those opinions close
to their own. But, again, there is no representation in these models of evidence
or of belief revision based on evidence.2

2There is also no way to distinguish in their models whether the agents ignore some other
opinions because they 1) do not like opinions that vary from their own or 2) do not trust
social sources with different opinions.
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As noted, we draw on the network epistemology framework in building our
model. While this framework has not been used to model confirmation bias,
there have been some relevant previous models considering cases where actors
devalue or ignore some data for various reasons. O’Connor & Weatherall (2018)
develop a model in which agents update on evidence less strongly when it is
shared by those with different beliefs. This devaluing focuses on the source of
information, rather than its content (as occurs in confirmation bias). Reflecting
some of our results, though, they find that devaluation at a low level is not
harmful, but at a higher level eventually causes polarization. Wu (2021) presents
models where a dominant group devalues or ignores information coming from
a marginalized group. Wu’s model (again) can yield stable polarization under
conditions in which this devaluation is very strong.3 In both cases, and, as will
become clear, in our models, polarization emerges only in those cases where
agents begin to entirely ignore data coming from some peers.

There is another set of results from epistemic network models that are highly
relevant here. Zollman (2007, 2010) shows that, counter-intuitively, in network
models communities tend to reach accurate consensus more often when the
individuals in them are less connected. This occurs because in highly connected
groups, early strings of misleading evidence can influence the entire group to
preemptively reject potentially promising theories. Less connected networks
tend to preserve a diversity of beliefs and practices longer, meaning there is
more time to explore the benefits of different theories.4 As will become clear, a
very similar dynamic explains why, in our model, moderate levels of confirmation
bias actually benefit a group. Zollman (2010) finds similar benefits to groups
composed of “stubborn” individuals, i.e., ones who start with more extreme
priors and thus learn less quickly. In our model, confirmation bias creates a
similar sort of stubbornness.5

3 Model

3.1 Base Model

As discussed, our model starts with the network epistemology framework (Bala
& Goyal, 1998), which has been widely used in recent work on social episte-
mology and the philosophy of science. Our version of the model builds off that
presented in Zollman (2010).

There are two key features of this framework: a decision problem and a
network. The decision problem represents a situation where agents want to
develop accurate, action-guiding beliefs about the world, but start off unsure

3See also Fazelpour & Steel (in press).
4Other papers have found similar results using NK-landscape models (March, 1991; Lazer

& Friedman, 2007; Fang et al., 2010), and have confirmed these empirically (Mason et al.,
2008; Derex & Boyd, 2016).

5See Wu & O’Connor (2022) for an overview of network models considering how mech-
anisms that slow learning, and thus promote transient diversity of practice, improve group
outcomes.
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about which actions are the best ones. In particular, we use a two-armed bandit
problem, which is equivalent to a slot machine with two arms that pay out at
different rates. The problem is then to figure out which arm is better. We will
call the two options A (or “all-right”) and B (or “better”). For our version of
the model, we will let the probabilities that each arm pays off be pb = .5 and
pa = pb − ε. In other words, there is always a benefit to taking option B, with
the difference between the arms determined by the value of ε.

Agents learn about the options by testing them, and then updating their
beliefs on the basis of these tests. Simulations of the model start by randomly
assigning beliefs to the agents about the two options. In particular, we use
two beta distributions to model agent beliefs about the two arms. These are
distributions from 0 to 1, tracking how much likelihood the agent assigns to
each possible probability of the arm in question. The details of the distribution
are not crucial to understand here.6 What is important is that there are two key
parameters for each distribution, α and β. These can be thought of as tracking
a history of successes (α) and failures (β) in tests of the arms. When new data
is encountered, say n trials of an arm with s successes, posterior beliefs are then
represented by a beta distribution with parameters α + s and β + n − s. It is
easy to calculate the expectation of this distribution, which is α

α+β .

Following Zollman (2010), we initialize agents by randomly selecting α and
β from [0, 4]. The set-up means that at the beginning of a trial, the agents
are fairly flexible since their distributions are based on relatively little data.
As more trials are performed, expectation becomes more rigid. For example if
α = β = 2, then expectation is 0.5. Expectation is flexible in that if the next
three pulls are failures, then expectation drops to 2

2+5 ≈ 0.286. However, if a
thousand trials resulted in α = β = 500, three repeated failures would result
in an expectation, 500

500+503 ≈ 0.499 (which is still close to 0.5). In simulation,
if the agents continue to observe data from the arms, their beta distributions
tend to become more and more tightly peaked at the correct probability value,
and harder to shift with small strings of data.

As a simulation progresses we assume that in each round agents select the
option they think more promising, i.e., the one with a higher expectation given
their beliefs. This assumption corresponds with a myopic focus on maximizing
current expected payoff. While this will not always be a good representation of
learning scenarios, it represents the idea that people tend to test those actions
and theories they think are promising.7 Each agent gathers some number of
data points, n, from their preferred arm. After doing so, they update their
beliefs in light of the results they gather, but also in light of data gathered by

6The function is defined as follows.
Definition (Beta Distribution) A function on [0, 1], f(·), is a beta distribution iff for some

α > 0 and β > 0

f(x) =
x(α−1)(1 − x)(β−1)

B(α, β)

where B(α, β) =
∫ 1
0 u

(α−1)(1 − u)(β−1)du.
7Kummerfeld & Zollman (2015) present models of this sort where agents also explore

options that they think are suboptimal.
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neighbors. This is where the network aspect of the model becomes relevant.
Agents are arrayed as nodes on a network, and it is assumed they see data from
all those with whom they share a connection.

To summarize, this model represents a social learning scenario where mem-
bers of a community 1) attempt to figure out which of two actions/options/beliefs
is more successful, 2) use their current beliefs to guide their data gathering prac-
tices, and 3) share data with each other. This is often taken as a good model
of scientific theory development (Zollman, 2010; Holman & Bruner, 2015; Kum-
merfeld & Zollman, 2015; Weatherall et al., 2020; Frey & Šešelja, 2020) or the
emergence of social consensus/beliefs more broadly (O’Connor & Weatherall,
2018; Wu, 2021; Fazelpour & Steel, in press).

In this base model, networks of agents eventually settle on consensus—either
preferring the better option B, or the worse option A. If they settle on A, they
stop exploring option B, and fail to learn that it is, in fact, better. This can
happen if, for instance, misleading strings of data convince a wide swath of the
group that B is worse than it really is.

3.2 Confirmation Bias

How do we incorporate confirmation bias into this framework? For each round
of simulation, after trial results are shared according to network connections,
agents have some probability of accepting and updating their beliefs based on
the shared results. This probability is based on how likely they believe those
results are given their prior beliefs, λ. This likelihood is a function of the
agent’s current beta distribution parameters, α and β, as well as the details
of the results, successes, s, per number of draws, n.8 An agent calculates λ
separately for each set of results shared via a network connection.

Additionally, the model includes an intolerance parameter, t, that impacts
how likely agents are to accept or reject results for a given prior probability of
those results occurring. The probability of an agent accepting a set of results
is:

paccept = λt

When t is low agents are more tolerant of results they consider unlikely, and
when t is high they tend to reject such results. For example, suppose an agent
thinks some shared results have a 5% chance of occurring given their prior
beliefs (i.e. λ = .05). Then for t = 1, the agent has a probability of accepting
paccept = .05. For t = 2, the agent is extremely intolerant with paccept = .052 =

8The likelihood for some agent of some set of results is given by a beta-binomial probability
mass function:

pmfX(s, n, α, β) =
(n
s

)B(s+ α, n− s+ β)

B(α, β)

where B(α, β) =
∫ 1
0 u

(α−1)(1−u)(β−1)du, X is the action (A or B) that generated the results,
α and β are the values corresponding to the receiving agent’s beliefs about action X, n is the
number of pulls, and s is the number of successes in shared results. For further discussion of
the beta-binomial probability mass function, see (N. L. Johnson et al., 2005, 282) or (Gupta
& Nadarajah, 2004, 425).
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.0025.9 For t = .5, the agent is more tolerant and paccept = .05.5 = .22. And
when t = 0 the probability of acceptance is always 1, i.e., our model reverts
to the base model with no confirmation bias. Whenever evidence is accepted,
agents update their beliefs using Bayes rule as described. Agents never reject
evidence they generated themselves. This feature mimics confirmation bias by
representing either, 1) a situation in which agents are selectively avoiding data
that does not fit with their priors, or 2) engaging with, but rejecting this data
and thus failing to update on it.

We consider several different simple network structures, including the cy-
cle, wheel, and complete networks (see figure 1). We also consider Erdos-Renyi
random networks, which are generated by taking some parameter b, and con-
necting any two nodes in the network with that probability (Erdős et al., 1960).
In general, we find qualitatively robust results across network structures. For
each run of simulation, we initialize agents as described, and let them engage in
learning until the community reaches a stable state.

Figure 1: Several network structures

4 Results

4.1 Moderate Confirmation Bias

In the model just described, notice, actors can be very unlikely to update on
some data set. But the structure of the beta distribution and our rule for
rejecting evidence means that they always accept data they encounter with
some probability. Whenever agents continue to test different theories, their data
continues to reach networks neighbors and shape the beliefs of these neighbors.
This mutual influences means that, as in previous versions of the model without
confirmation bias, actors in our model always reach consensus eventually: either
correct consensus that B is better, or incorrect consensus in A. The question
is: how does the introduction of confirmation bias influence the frequency with
which correct vs. incorrect consensus emerges?

Surprisingly, we find that confirmation bias improves the knowledge produc-
ing capacity of epistemic networks, in that it increases the likelihood a particu-
lar network will reach correct consensus. This finding is robust across network

9We do not actually consider values of t > 1 in our simulations because generally prior
probabilities of evidence are fairly small to begin with.
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structures, and variations in other parameters (network size, N , number of pulls
per round, n, difference between the arms, ε).10 Figure 2 shows this result for
the wheel network with different numbers of agents. Results are averages over
1000 runs of simulation for each parameter value. Each trace tracks a different
amount of confirmation bias, as modulated by t. As is clear, the larger t is,
i.e., the more confirmation bias, the more often the network of agents correctly
concludes that B is the better option.11

Figure 2: When agents use moderate levels of confirmation bias, groups tend to
reach accurate consensus more often. This figure shows results for small wheel
networks. Qualitative results are robust across parameter values. ε = .001,
n = 1000

As noted this trend is robust across parameter values. In figure 3 we show
similar results for larger graphs randomly generated using the Erdos-Renyi algo-

10In all results presented we hold ε = .001 and n = 1000. These choices follow previous
authors. They also keep the difficulty of the bandit problem in a range where it is at least
somewhat challenging to identify the better option. This reflects the fact that we wish to
model the sort of problem that might actually pose a challenge to a community trying to
solve it. If ε is larger, or n larger, the problem is easier and more communities reach accurate
consensus in this sort of model.

11For all results displayed, we ran simulations long enough to reach stable consensus. To
check replicability, the model was coded independently by two separate team members. Re-
sults were all highly similar, with some small variations based on exact details of algorithm
implementation. Code is available at REMOVED FOR REVIEW.
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rithm described above. Again, higher levels of intolerance correspond to better
group learning.

Figure 3: When agents use moderate levels of confirmation bias, groups tend
to reach accurate consensus more often. This figure shows results for moderate
sized ER random networks with the probability of connection between any two
nodes, b = .5. Qualitative results are robust across parameter values. ε = .001,
n = 1000

As noted, this finding relates to results from Zollman (2007, 2010) show-
ing that both lowering connectivity and increasing stubbornness can improve
outcomes in this sort of model. This “Zollman effect” occurs when individuals
influence each other too strongly, and, as a result, are prone to incorrectly settle
on option A as a result of early strings of misleading data. By making agents less
willing to accept data that might change their mind, confirmation bias decreases
social influence in a similar way and leads to longer period of exploration for
both theories. This, in turn, increases the chances that the entire group selects
the better option B in the end.

While it is surprising that a reasoning bias which is usually treated as worri-
some can actually improve the performance of a group, this result reflects claims
from Mercier & Sperber (2017). They point out that while confirmation bias is
treated as irrational, and assumed to have largely negative epistemic effects, it
might be beneficial in a group setting. In particular, they think that when peers
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disagree about matters of fact, confirmation bias allows them to divide labor by
developing good arguments in favor of opposing positions. They are then jointly
in a position to consider these arguments and come to a good conclusion. This
fits with a larger picture where reasoning evolved in a social setting, and what
look like detrimental biases actually have beneficial functions for groups. Their
mechanism for a possible group benefit for confirmation bias is not the same
as the one we identify. Ours depends on the idea that confirmation bias leads
to continued exploration and data gathering about multiple theories or actions,
while theirs depends on interpersonal argumentation as a route to accurate be-
lief. But both accounts suggest that confirmation bias might, counterintuitively,
do something positive for epistemic groups.

To test the robustness of our general finding, we implement another version
of the model. Confirmation bias in the first version responds to the likelihood
of some data set given current beliefs. But confirmation bias often occurs in the
context of fairly coarse-grained information. What if we suppose individuals
ignore details of the data and ask simply: which general option does this data
support? And: do I think that option is the better one? In deciding to accept
or reject a set of data in this version of the model, the actor calculates their
probability that B is better than A, or vice versa, and scales with an intolerance
parameter as before.12 Actors accept any data set supporting B (or A) with
probability Paccept.

The qualitative results of this “coarse grained” model are similar to the
previous one. Across parameters, increasing confirmation bias leads to improved
group outcomes. Figure 4 shows results for ER random networks with different
numbers of agents. As is clear, a higher value of t is again associated with a
greater probability that the group adopts a consensus on the better option, B.

12That is we calculate Paccept as

Paccept =

999∑
i=0

pmfA(i, n, αA, βA) ∗
1000∑
j=i+1

pmfB(j, n, αB , βB)

t

where pmfX(s, n, α, β)) is the same as before.
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Figure 4: Moderate confirmation bias increases epistemic success under a differ-
ent operationalization of confirmation bias. This figure shows results for mod-
erate sized ER random networks with the probability of connection between
any two nodes, b = .5. Qualitative results are robust across parameter values.
ε = .001, n = 1000

Our results to this point seem to suggest that confirmation bias is an un-
mitigated good in a group setting. It is true that the sort of confirmation
bias modelled so far always improves group consensus formation in our models.
There are a few caveats, though. First, for parameter settings where the de-
cision problem is relatively easy—where the network (N) is large, agents draw
more data (n is large), and/or the two arms are relatively easy to disambiguate
(ε is large)—most groups successfully learn to choose the correct arm. In these
cases confirmation bias does little to improve learning.13 On the other hand,
confirmation bias as we model it always slows down consensus formation, some-
times very dramatically. This creates a trade-off between speed of learning and
accuracy of consensus formation (Zollman, 2007, 2010). In cases where it is
important for a group to quickly reach consensus, then, confirmation bias might
cause problems. Second, as will become clear in the next section, stronger as-
sumptions about what confirmation bias entails will shift this narrative.

13See also Rosenstock et al. (2017) who point out that the benefits of network connectivity
shown in Zollman (2010) are only relevant to difficult problems.
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4.2 Strong Confirmation Bias

To this point, we have only considered models where agents always have some
probability of updating on data they encounter, though this probability may
be small. This means that all agents continue to exert influence on each other,
regardless of what they believe and what sorts of data they gather. This influ-
ence might be small, but it ensures that given enough time the community will
eventually reach consensus on one of the two options.

But what if agents sometimes entirely discount data that does not fit their
prior beliefs? We now look at a much simpler version of confirmation bias.
Agents calculate how likely some data set is given their current beliefs, as before.
If that probability is below some threshold, h, they discard the data. If it is
above that threshold, they update on it.

In this version of the model, we now observe outcomes where groups do not
settle on consensus. It is possible for subgroups to emerge which favor different
options, and where data supporting the alternative position is unpersuasive to
each group. This can be understood as a form of polarization—agents within the
same community settle on stable, mutually exclusive beliefs, and do not come
to consensus even in the face of continued interaction and sharing of evidence.14

Figure 5 shows results for Erdos-Renyi random networks with different thresh-
olds for ignoring discordant data, h. As is clear, as the cutoff becomes more
stringent, fewer simulations end up adopting an accurate consensus.

14There are many ways the term polarization is used. Here we operationalize it as any
outcome where the community fails to reach consensus, and where this lack of consensus is
stable. This approximately tracks notions of polarization that have to do with failure of a
community to agree on matters of fact.
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Figure 5: Strong confirmation bias hurts group learning. This figure shows re-
sults for moderate sized ER random networks with the probability of connection
between any two nodes, b = .5. Qualitative results are robust across parameter
values. ε = .001, n = 1000

As noted much of the reason that communities fail to reach accurate consen-
sus in these models is because they polarize. When this happens, some actors
adopt accurate beliefs, but others do not. Because actors with inaccurate beliefs
develop credences where the accurate belief looks very unlikely to them, they
become entirely insensitive to data that might improve their epistemic state. As
figure 6 shows, polarization occurs more often the stronger the agents’ confir-
mation bias. Both accurate and inaccurate consensus become less common. For
parameter values where only very likely data is accepted, polarization almost
always emerges.
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Figure 6: Strong confirmation bias leads to polarization. This figure shows
results for ER random networks with the probability of connection between
any two nodes, b = .5. Qualitative results are robust across parameter values.
N = 6, ε = .001, n = 1000

Another question we might ask is: how does this stronger form of confirma-
tion bias impact the general epistemic success of agents in the network? Note
that since polarization occurs in these models this is a slightly different question
than how strong confirmation bias impacts correct group consensus. Given that
confirmation bias leads to an increase in polarization, and a decrease in both
correct and incorrect consensus formation, it is not immediately clear whether
it is epistemically harmful on average.

In general we find that this stronger form of confirmation bias leads fewer
individual actors, on average, to hold correct beliefs. As is evident in figure 7
for high levels of strong confirmation bias, fewer individuals hold true beliefs.
In this figure notice that for lower levels of confirmation bias there is relatively
little impact on average true belief. In fact, given details of network size, we find
that there is often a slight advantage to a little confirmation bias for the reasons
outlined in the last section—it prevents premature lock-in on false consensus.15

This slight advantage is eventually outweighed by the negative impacts of too
much distrust. As confirmation bias increases, eventually too many agents adopt
false beliefs, and fail to engage with disconfirmatory evidence.

15In the simulations pictured here, the 20-30% cutoff range does the best by a hair.
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Figure 7: Avegerage correct beliefs under strong confirmation bias. This figure
shows results for ER random networks of size 6 and 9, with the probability of
connection between any two nodes, b = .5. Qualitative results are robust across
parameter values. ε = .001, n = 1000

At this point, it may seem that small differences in how confirmation bias
is modelled have large impacts on how it influences group learning. As long
as agents continue to have some influence on each other, no matter how small,
confirmation bias improves consensus formation (and thus average true beliefs).
Once this is no longer true, it generally harms average true beliefs. This picture
is not quite right. Recall from the previous section that moderate confirmation
bias always slows consensus formation, sometimes dramatically. When this hap-
pens, a network can remain in a state of transient polarization for a long period
of time. If we stopped our models at some arbitrary time period, rather than
always running them to a stable state, the two sorts of confirmation bias would
look more similar. In both cases confirmation bias leads to polarization, but in
one case that polarization eventually resolves, and this process improves com-
munity learning. The take-away is thus a complex one—confirmation bias can
have surprising benefits, but these benefits are neither simple, nor unmitigated.
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5 Conclusion

We find that confirmation bias, in a more moderate form, improves the epistemic
performance of agents in a networked community. This is perhaps surprising
given that previous work mostly emphasizes the epistemic harms of confirma-
tion bias. By decreasing the chances that a group pre-emptively settles on a
promising theory or option, confirmation bias can improve the likelihood that
the group chooses optimal options in the long run. In this, it can play a similar
role to decreased network connectivity or stubbornness (Zollman, 2007, 2010;
Wu, 2021). The downside is that more robust confirmation bias, where agents
entirely ignore data that is too disconsonant with their current beliefs, can lead
to polarization, and harm the epistemic success of a community. Our modeling
results thus provide potential support for the arguments of Mercier & Sperber
(2017) regarding the benefits of confirmation bias to a group, but also a caution.
Too much confirmation bias does not provide such benefits.

There are several ongoing discussions in philosophy and the social sciences
where these reseults are relevant. Mayo-Wilson et al. (2011) use network models
to argue for the independence thesis—that rationality of individual agents and
rationality of the groups they form sometimes come apart. I.e., individually
rational agents may form groups which are not ideally rational, and rational
groups may sometimes consist in individually irrational agents. Our results
lend support to this claim. While there is a great deal of evidence suggesting
that confirmation bias is not ideal for individual reasoners, our results suggest
that it can nonetheless improve group reasoning under the right conditions.16

This argument about the independence thesis connects up with debates
about whether it is ever rational to ignore, or fail to update on, free evidence.17

According to Good’s theorem, it is always rational to update in such cases
(Good, 1967). The proof relies on the idea that an individual who wishes to
maximize their expected utility will not do worse, and will often do better, by
updating on available, free information. In the models presented, our agents
sometimes choose to ignore evidence, and doing so increases their chances of
eventually holding true beliefs. Of course, in the meantime they ignore good
evidence that should, on average, improve the success of their actions. Whether
or not they “should” ignore evidence in this case arguably depends on what
their goals are. But if the central goal is to eventually settle on the truth, we
show that ignoring some data can help in a group learning setting.

It is worth noting that our results are also consonant with some lines of
argumentation in philosophy of science regarding the value of stubbornness or
dogmatism to the progress of science. Kuhn (1977), for instance, suggests that
disagreement is crucial in science to promote the exploration of a variety of
potentially promising theories. Some amount of potentially irrational stubborn-

16We do not take a strong stance here about how to define rationality for a group. The
main observation is that epistemically successful groups can be formed from irrational agents.

17Of course if data is costly, it is easy to see that even a rational agent might not be willing
to pay the costs to update on it. But in our modeling set-up, we assume that data may be
shared and updated on cost-free.
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ness is acceptable in generating this disagreement. Popper (1975) is not too
worried about confirmation bias in individual scientists because, as he argues,
the critical aspect of science as practised in a group will serve to eliminate
poor theories. He goes on to argue that, “...a limited amount of dogmatism
is necessary for progress: without a serious struggle for survival in which the
old theories are tenaciously defended, none of the competing theories can show
their mettle” (98). On this picture, it is not ideal for scientists to abandon their
currently preferred theories too easily. Some persistent disagreement or debate
is necessary to ensure that a new theory is worthwhile. He goes on to add,
though, that, “Intolerant dogmatism...is one of the main obstacles for science”
(98). New theories must at least be entertained and given proper attention by
the scientific community. Our results support this picture.

There is a question, though, about whether confirmation bias, or other forms
of arguably irrational stubbornness, are the best mechanisms by which to im-
prove group learning. Wu & O’Connor (2022) overview the literature looking at
transient diversity of practice/beliefs in network models. They end up arguing
that in scientific communities there are better ways to ensure this diversity than
to encourage actors to be stubborn. For example, centralized funding bodies
can promote the right amount of exploration across topics instead. By doing
so, they allow all scientists to learn about all data rationally, but still prevent
premature adoption of suboptimal theories. But Wu and O’Connor’s conclu-
sions are specific to scientific disciplines where there are levers for coordinating
exploration across a group. When it comes to more general epistemic groups,
especially outside of science, such coordination may not be possible. If so, con-
firmation bias may provide benefits that are not available via more efficient
routes.

One larger discussion that this paper contributes to regards the mechanisms
that can lead to polarization in real communities. Such mechanisms often in-
clude a feedback loop wherein similarity of opinion/belief leads to increased
influence between individuals, and vice versa. Individuals whose beliefs diverge
end up failing to influence each other, and their divergent beliefs become stable.
But under this general heading, theorists have identified a number of differ-
ent such mechanisms. Hegselmann et al. (2002) show how this can happen if
individuals fail to update on the opinions of those who do not share their opin-
ions. Weatherall & O’Connor (2020) find polarization emerges when individuals
conform with those in their social cliques, and thus ignore data from those out-
side. Pariser (2011) argues that algorithms can drive polarization by supplying
only information that users like in the face of confirmation bias. Echo cham-
bers function when individuals seek out and connect to friends and peers who
share their beliefs (see also modeling work by Baldassarri & Bearman (2007)).
Wu (2021) finds polarization arises when entire groups mistrust other groups
based on social identity. O’Connor & Weatherall (2018), as noted, find that
polarization emerges when actors do not trust data from peers who hold differ-
ent beliefs. And in our models polarization can follow from confirmation bias
because subgroups ignore different sets of disconfirmatory data.

Why does this diversity of mechanisms for polarization matter? It suggests
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that identifying sufficient causes of polarization is very different from identi-
fying necessary, or even likely, causes of polarization. It also suggests that in
considering real instances of polarization researchers should be sensitive to many
possible causes. Thus experimental/empirical research and modeling are both
necessary in figuring out just what real causes are at work in producing social
polarization.

As a last note before concluding, we would like to discuss limitations of our
models. Of course the models we present are highly simplified compared to real
social networks. This means that the results should, of course, be taken with a
grain of salt. In particular, we only consider one type of learning problem—the
one-armed bandit model. The question remains whether and to what degree
these results will be robust. We suspect that models with other problems might
yield similar results. The general benefit of slowing group learning, and pro-
moting a period of exploration, has been established across a number of models
with different problems and mechanisms (Wu & O’Connor, 2022). We leave this
for future research.
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